PYTHON使用Matplotlib去实现各种条形图的绘制


Posted in Python onMarch 22, 2022

1. 条形图的绘制

plt.bar 方法有以下常用参数:

  • x :一个数组或者列表,代表需要绘制的条形图的x轴的坐标点。
  • height :一个数组或者列表,代表需要绘制的条形图y轴的坐标点。
  • width :每一个条形图的宽度,默认是0.8的宽度。
  • bottom : y 轴的基线,默认是0,也就是距离底部为0.
  • align :对齐方式,默认是 center ,也就是跟指定的 x 坐标居中对齐,还有为 edge ,靠
  • 边对齐,具体靠右边还是靠左边,看 width 的正负。
  •  color :条形图的颜色。

返回值为 BarContainer ,是一个存储了条形图的容器,而条形图实际上的类型
是 matplotlib.patches.Rectangle 对象。
更多参考

比如现在有 2019 年贺岁片票房的数据(数据来源

#票房单位亿元
movies = {
 "流浪地球":40.78,
 "飞驰人生":15.77,
 "疯狂的外星人":20.83,
 "新喜剧之王":6.10,
 "廉政风云":1.10,
 "神探蒲松龄":1.49,
 "小猪佩奇过大年":1.22,
 "熊出没·原始时代":6.71
}

用条形图绘制每部电影及其票房的代码如下:

movies = {
    "流浪地球":40.78,
    "飞驰人生":15.77,
    "疯狂的外星人":20.83,
    "新喜剧之王":6.10,
    "廉政风云":1.10,
    "神探蒲松龄":1.49,
    "小猪佩奇过大年":1.22,
    "熊出没·原始时代":6.71
}
x = list(movies.keys())
y = list(movies.values())
plt.figure(figsize=(15,5))
# plt.bar(x,y,width=-0.3,align="edge",color='r',edgecolor='k')
movie_df = pd.DataFrame(data={"names":list(movies.keys()),"tickets":list(movies.values())})
plt.bar("names","tickets",data=movie_df)
plt.xticks(fontproperties=font,size=12)
plt.yticks(range(0,45,5),["%d亿"%x for x in range(0,45,5)],fontproperties=font,size=12)
plt.grid()

PYTHON使用Matplotlib去实现各种条形图的绘制

其中 xticks yticks 的用法跟之前的折线图一样。这里新出现的方法是 bar , bar 常用的有3个参数,分别是 x (x轴的坐标点), y (y轴的坐标点)以及 width (条形的宽度)。

2. 横向条形图

横向条形图需要使用plt.barh 这个方法跟 bar 非常的类似,只不过把方向进行旋转。参数
跟 bar 类似,但也有区别。

如下:

  • y :数组或列表,代表需要绘制的条形图在 y 轴上的坐标点。
  • width :数组或列表,代表需要绘制的条形图在 x 轴上的值(也就是长度)。
  • height :条形图的高度,默认是0.8。
  • left :条形图的基线,也就是距离y轴的距离。

其他参数跟 bar 一样。
返回值也是 BarContainer 容器对象。

还是以以上数据为例,将电影名和票房反转一下。

示例代码如下:

plt.barh(list(movies.keys()),list(movies.values()))
plt.yticks(fontproperties=font,size=12)

PYTHON使用Matplotlib去实现各种条形图的绘制

3. 分组条形图

现在有一组数据,是2019年春节贺岁片前五天的电影票房记录。

示例代码如下:

movies = {
    "流浪地球":[2.01,4.59,7.99,11.83,16],
    "飞驰人生":[3.19,5.08,6.73,8.10,9.35],
    "疯狂的外星人":[4.07,6.92,9.30,11.29,13.03],
    "新喜剧之王":[2.72,3.79,4.45,4.83,5.11],
    "廉政风云":[0.56,0.74,0.83,0.88,0.92],
    "神探蒲松龄":[0.66,0.95,1.10,1.17,1.23],
    "小猪佩奇过大年":[0.58,0.81,0.94,1.01,1.07],
    "熊出没·原始时代":[1.13,1.96,2.73,3.42,4.05]
}

plt.figure(figsize=(20,8))
width = 0.75
bin_width = width/5
movie_pd = pd.DataFrame(movies)
ind = np.arange(0,len(movies))
# 第一种方案
# first_day = movie_pd.iloc[0]
# plt.bar(ind-bin_width*2,first_day,width=bin_width,label='第一天')
# second_day = movie_pd.iloc[1]
# plt.bar(ind-bin_width,second_day,width=bin_width,label='第二天')
# third_day = movie_pd.iloc[2]
# plt.bar(ind,third_day,width=bin_width,label='第三天')
# four_day = movie_pd.iloc[3]
# plt.bar(ind+bin_width,four_day,width=bin_width,label='第四天')
# five_day = movie_pd.iloc[4]
# plt.bar(ind+bin_width*2,five_day,width=bin_width,label='第五天')

# 第二种方案
for index in movie_pd.index:
    day_tickets = movie_pd.iloc[index]
    xs = ind-(bin_width*(2-index))
    plt.bar(xs,day_tickets,width=bin_width,label="第%d天"%(index+1))
    for ticket,x in zip(day_tickets,xs):
        plt.annotate(ticket,xy=(x,ticket),xytext=(x-0.1,ticket+0.1))
# 设置图例
plt.legend(prop=font)
plt.ylabel("单位:亿",fontproperties=font)
plt.title("春节前5天电影票房记录",fontproperties=font)
# 设置x轴的坐标
plt.xticks(ind,movie_pd.columns,fontproperties=font)
plt.xlim
plt.grid(True)
plt.show()

PYTHON使用Matplotlib去实现各种条形图的绘制

4. 堆叠条形图

堆叠条形图,是将一组相关的条形图堆叠在一起进行比较的条形图。

比如以下案例:

menMeans = (20, 35, 30, 35, 27)
womenMeans = (25, 32, 34, 20, 25)
groupNames = ('G1','G2','G3','G4','G5')
plt.bar(groupNames,menMeans,label="男性得分")
plt.bar(groupNames,womenMeans,bottom=menMeans,label='女性得分')
plt.legend(prop=font)

PYTHON使用Matplotlib去实现各种条形图的绘制

在绘制女性得分的条形图的时候,因为要堆叠在男性得分的条形图上,所以使用到了一
bottom 参数,就是距离 x 轴的距离。通过对贴条形图,我们就可以清楚的知道,哪一个队伍的综合排名是最高的,并且在每个队伍中男女的得分情况。

5. 条形图应用场景

  • 数量统计。
  • 频率统计。
  • 适用于分类数据对比。
  • 垂直条形图最多不超过12个分类(也就是12个柱形),横向条形图最多不超过30个分类。如果垂直条形图的分类名太长,那么建议换成横向条形图。
  • 柱状图不适合表示趋势,如果想要表示趋势,应该使用折线图。

到此这篇关于Matplotlib实现各种条形图绘制的文章就介绍到这了,更多相关Matplotlib条形图绘制内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
详解Python验证码识别
Jan 25 Python
网站渗透常用Python小脚本查询同ip网站
May 08 Python
Python实现的单向循环链表功能示例
Nov 10 Python
django 2.0更新的10条注意事项总结
Jan 05 Python
django 通过URL访问上传的文件方法
Jul 28 Python
将Pytorch模型从CPU转换成GPU的实现方法
Aug 19 Python
基于python的selenium两种文件上传操作实现详解
Sep 19 Python
Python3实现飞机大战游戏
Apr 24 Python
如何在sublime编辑器中安装python
May 20 Python
Jupyter安装链接aconda实现过程图解
Nov 02 Python
Python的代理类实现,控制访问和修改属性的权限你都了解吗
Mar 21 Python
python中pymysql包操作数据库方法
Apr 19 Python
Python+OpenCV实现在图像上绘制矩形
Matplotlib绘制条形图的方法你知道吗
Python的代理类实现,控制访问和修改属性的权限你都了解吗
Mar 21 #Python
python的netCDF4批量处理NC格式文件的操作方法
Python&Matlab实现灰狼优化算法的示例代码
Python学习之时间包使用教程详解
Mar 21 #Python
Python数据结构之队列详解
You might like
针对初学PHP者的疑难问答(1)
2006/10/09 PHP
PHP 魔术变量和魔术函数详解
2015/02/25 PHP
php检查日期函数checkdate用法实例
2015/03/19 PHP
php ucwords() 函数将字符串中每个单词的首字符转换为大写(实现代码)
2016/05/12 PHP
thinkphp整合微信支付代码分享
2016/11/24 PHP
PHP实现正则表达式分组捕获操作示例
2018/02/03 PHP
php 策略模式原理与应用深入理解
2019/09/25 PHP
插件:检测javascript的内存泄漏
2007/03/04 Javascript
B/S开发中常用javaScript技术与代码
2007/03/09 Javascript
jquery与prototype框架的详细对比
2013/11/21 Javascript
JavaScript中的方法调用详细介绍
2014/12/30 Javascript
JavaScript将当前时间转换成UTC标准时间的方法
2015/04/06 Javascript
举例详解AngularJS中ngShow和ngHide的使用方法
2015/06/19 Javascript
javascript作用域问题实例分析
2015/07/13 Javascript
JavaScript仿微博发布信息案例
2016/11/16 Javascript
将鼠标焦点定位到文本框最后(代码分享)
2017/01/11 Javascript
微信小程序中实现一对多发消息详解及实例代码
2017/02/14 Javascript
Vue2.0使用过程常见的一些问题总结学习
2017/04/10 Javascript
详解AngularJS controller调用factory
2017/05/19 Javascript
如何让你的JS代码更好看易读
2017/12/01 Javascript
JS实现根据详细地址获取经纬度功能示例
2019/04/16 Javascript
vue实现简单瀑布流布局
2020/05/28 Javascript
python定时检查启动某个exe程序适合检测exe是否挂了
2013/01/21 Python
Python简单实现socket信息发送与监听功能示例
2018/01/03 Python
Sanic框架基于类的视图用法示例
2018/07/18 Python
tensorflow实现加载mnist数据集
2018/09/08 Python
python系列 文件操作的代码
2019/10/06 Python
NumPy统计函数的实现方法
2020/01/21 Python
解决Python 函数声明先后顺序出现的问题
2020/09/02 Python
python报错TypeError: ‘NoneType‘ object is not subscriptable的解决方法
2020/11/05 Python
python 图像增强算法实现详解
2021/01/24 Python
DIY蛋糕店的创业计划书范文
2013/12/26 职场文书
合作意向书范本
2014/03/31 职场文书
观看信仰心得体会
2014/09/04 职场文书
2015年语言文字工作总结
2015/07/23 职场文书
班组长如何制订适合本班组的工作计划?
2019/07/10 职场文书