Matplotlib绘制条形图的方法你知道吗


Posted in Python onMarch 21, 2022
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import font_manager

一、一般条形图

一般条形图使用 pyplot.bar()函数绘制,其形式及参数如下:

matplotlib.pyplot.bar(x, height, width=0.8, bottom=None, *, align='center', data=None, **kwargs)
主要参数解释:
# x:一个数组或者列表,代表需要绘制的条形图的x轴的坐标点。
# height:一个数组或者列表,代表需要绘制的条形图y轴的坐标点。
# width:每一个条形图的宽度,默认是0.8的宽度。
# bottom:y轴的基线,默认是0,也就是距离底部为0.
# align:对齐方式,{'center','edge'},默认是center,居中对齐;edge为靠边对齐,具体靠右边还是靠左边,看width的正负。
# color:条形图的颜色。
# edgecolor : 条形图边框的颜色。
# linewidth  : 条形图边框的宽度。如果为 0,则不绘制边框

示例:

某天电影票房数据:

movies = {
    "流浪地球":40.78,
    "飞驰人生":15.77,
    "疯狂的外星人":20.83,
    "新喜剧之王":6.10,
    "廉政风云":1.10,
    "神探蒲松龄":1.49,
    "小猪佩奇过大年":1.22,
    "熊出没·原始时代":6.71
}

直接通过获取字典的键值作为x,y轴数据

#票房单位亿元
movies = {
    "流浪地球":40.78,
    "飞驰人生":15.77,
    "疯狂的外星人":20.83,
    "新喜剧之王":6.10,
    "廉政风云":1.10,
    "神探蒲松龄":1.49,
    "小猪佩奇过大年":1.22,
    "熊出没·原始时代":6.71
}
# 中文显示问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['font.size'] = 13
# 设置图大小
plt.figure(figsize=(15,8))

x = list(movies.keys()) # 获取x轴数据(字典的键)
y = list(movies.values()) # 获取y轴数据(字典的值)

plt.bar(x,y,width=0.5,bottom=0,align='edge',color='g',edgecolor ='r',linewidth=2)

# 绘制标题
plt.title("电影票房数据",size=26)

# 设置轴标签
plt.xlabel("电影名",size=28)
plt.ylabel("票房/亿",size=28)

plt.show()

Matplotlib绘制条形图的方法你知道吗

也可以利用字典创建DataFrame索引,通过data参数传入

#票房单位亿元
movies = {
    "流浪地球":40.78,
    "飞驰人生":15.77,
    "疯狂的外星人":20.83,
    "新喜剧之王":6.10,
    "廉政风云":1.10,
    "神探蒲松龄":1.49,
    "小猪佩奇过大年":1.22,
    "熊出没·原始时代":6.71
}
movies_df = pd.DataFrame(data={"name":list(movies.keys()),"tickes":list(movies.values())}) #通过字典创建DataFrame索引
font = font_manager.FontProperties(fname='C:\Windows\Fonts\STSONG.TTF',size=12)  # 使用font_manager模块设置中文

# 设置图的大小,传入x,y
plt.figure(figsize=(14,5))

# 使用plt.bar()绘制条形图
plt.bar("name","tickes",data=movies_df,width=0.5,bottom=0,align='edge',color='g',edgecolor ='r',linewidth=2)

#设置X轴刻度,设置字体,也可以设置字体大小size
plt.xticks(fontproperties=font)

# 设置标题
plt.title("电影票房数据",size=30)
#设置X,Y轴名字
plt.ylabel('票房',fontproperties=font,size=25)
plt.xlabel('影片名字',fontproperties=font,size=25)

#设置Y刻度
plt.yticks(range(0,50,5),["%d"%x for x in range(0,50,5)],fontproperties=font1,size=20)

# 只保留图形信息
plt.show()

Matplotlib绘制条形图的方法你知道吗

二、横向条形图

横向条形图需要使用barh()这个跟bar非常的类似,只不过把方向进行旋转。参数也和pyplot.bar()类似

matplotlib.pyplot.barh(y, width, height=0.8, left=None, *, align='center', **kwargs)
# 主要参数解释:
# y:数组或列表,代表需要绘制的条形图在y轴上的坐标点。
# width:数组或列表,代表需要绘制的条形图在x轴上的值(也就是长度)。
# height:条形图的高度(宽度),默认是0.8。
# left:条形图的基线,也就是距离y轴的距离。默认为0

示例:

plt.barh()

movies = {
    "流浪地球":40.78,
    "飞驰人生":15.77,
    "疯狂的外星人":20.83,
    "新喜剧之王":6.10,
    "廉政风云":1.10,
    "神探蒲松龄":1.49,
    "小猪佩奇过大年":1.22,
    "熊出没·原始时代":6.71
}
font2 = font_manager.FontProperties(fname='C:\Windows\Fonts\STSONG.TTF')
x1 = list(movies.keys())
y1 = list(movies.values())

# 设置图的大小
plt.figure(figsize=(10,5))

# 使用plt.barh()
plt.barh(x1,y1,height=0.7,left=0,color='c',edgecolor='r')

#设置Y轴刻度,设置字体,也可以设置字体大小size
plt.yticks(fontproperties=font2,size=20)

plt.xlabel("票房/亿",size=20)

# 设置标题
plt.title("电影票房数据",size=30)

# 只保留图形信息
plt.show()

Matplotlib绘制条形图的方法你知道吗

Axes.barh(y, width, height=0.8, left=None, *, align='center', **kwargs)

另外,还可通过返回的axes对象绘制图形

movies = {
    "流浪地球":40.78,
    "飞驰人生":15.77,
    "疯狂的外星人":20.83,
    "新喜剧之王":6.10,
    "廉政风云":1.10,
    "神探蒲松龄":1.49,
    "小猪佩奇过大年":1.22,
    "熊出没·原始时代":6.71
}

font2 = font_manager.FontProperties(fname='C:\Windows\Fonts\STSONG.TTF')
mdf = pd.DataFrame(data={"name":list(movies.keys()),"tickes":list(movies.values())})

fig,axes = plt.subplots()  

# 通过返回的axes对象绘制图形
axes.barh("name","tickes",data = mdf,height=0.6,left=0,color='c',edgecolor='r')

#设置Y轴刻度,设置字体,也可以设置字体大小size
plt.yticks(fontproperties=font2,size=20)

plt.xlabel("票房/亿",size=24)

# 设置标题
plt.title("电影票房数据",size=27)

# 只保留图形信息
plt.show()

Matplotlib绘制条形图的方法你知道吗

三、分组条形图的绘制

五天的电影票房数据(假设日期为1.1-1.5):并转换为DataFrame索引

movies = {
    "流浪地球":[2.01,4.59,7.99,11.83,16],
    "飞驰人生":[3.19,5.08,6.73,8.10,9.35],
    "疯狂的外星人":[4.07,6.92,9.30,11.29,13.03],
    "新喜剧之王":[2.72,3.79,4.45,4.83,5.11],
    "廉政风云":[0.56,0.74,0.83,0.88,0.92],
    "神探蒲松龄":[0.66,0.95,1.10,1.17,1.23],
    "小猪佩奇过大年":[0.58,0.81,0.94,1.01,1.07],
    "熊出没·原始时代":[1.13,1.96,2.73,3.42,4.05]
}
mdf = pd.DataFrame(movies)  
mdf

Matplotlib绘制条形图的方法你知道吗

绘制分组条形图思路:先选出每天所有电影的票房数据,可使用DataFrame.iloc[]方法获取,例如

# 获取第一天票房数据
mdf.iloc[0]
流浪地球        2.01
飞驰人生        3.19
疯狂的外星人      4.07
新喜剧之王       2.72
廉政风云        0.56
神探蒲松龄       0.66
小猪佩奇过大年     0.58
熊出没·原始时代    1.13
Name: 0, dtype: float64

然后按天进行绘制,这里需要确定一个中心点作为中间日期的条形图位置(这里为第三天),有多少部电影就需要多少个中心点,可使用np.arange(len(movies))获取x轴刻度作为中心点。最后根据日期按条形图的宽度调整条形图位置即可。

plt.figure(figsize=(15,5))
# 设置X轴刻度为一个数组(有广播功能)
xticks = np.arange(len(movies)) 

#设置字体
font = font_manager.FontProperties(fname='C:\Windows\Fonts\STSONG.TTF')

# 设置条形图宽度
bar_width = 0.15

#设置第一天所有影片条形图的位置
plt.bar(xticks-2*bar_width,mdf.iloc[0],width=bar_width,color='pink') # iloc[]取DataFrame的一行
#设置第二天所有影片条形图的位置 
plt.bar(xticks-bar_width,mdf.iloc[1],width=bar_width)
#设置第三天所有影片条形图的位置,默认在[0 1 2 3 4 5 6 7]center处
plt.bar(xticks,mdf.iloc[2],width=bar_width)
#设置第四天所有影片条形图的位置
plt.bar(xticks+bar_width,mdf.iloc[3],width=bar_width)
#设置第五天所有影片条形图的位置
plt.bar(xticks+2*bar_width,mdf.iloc[4],width=bar_width)

# 设置X轴信息
plt.xticks(xticks,mdf.columns,fontproperties=font,size=15)
#设置Y刻度
plt.yticks(range(0,20,2),["%d"%x for x in range(0,20,2)],fontproperties=font,size=16)

#设置X,Y轴名字
plt.ylabel('票房/亿',fontproperties=font,size=30)
plt.xlabel('影片名字',fontproperties=font,size=30)

# 设置标题
plt.title("五日票房数据",fontproperties=font,size=30)

# 只保留图形信息
plt.show()

Matplotlib绘制条形图的方法你知道吗

使用循环绘制每日数据

plt.figure(figsize=(16,5))
# 设置X轴刻度为一个数组(有广播功能)
#xticks1 = np.arange(len(movies)) # 这样设置每部电影X轴的距离是1,如果5个条形图宽度之后大于1会和其他电影重叠,可以设置步长
xticks1 = np.arange(0,7*len(movies),7) # 改变步长,要在设置X轴信息处改变xticks(步长*ticks labels)的第一个参数,否则对应不上

#设置字体
font4 = font_manager.FontProperties(fname='C:\Windows\Fonts\STSONG.TTF')

# 设置条形图宽度
bar_width1 = 1.05

#使用循环画出前五天的条形图
for index in mdf.index:
   # plt.bar(xticks1+(-2+index)*bar_width1,mdf.iloc[index],width=bar_width1,label='第%d天票房'%(index+1))
    xs = xticks1+(-2+index)*bar_width1 # 在X轴的位置
    day_tickets = mdf.iloc[index]
    plt.bar(xs,day_tickets,width=bar_width*7,label="第%d天票房"%(index+1))
    #设置注释文本
    # zip(day_tickets,xs)打包为元素为元组的列表,元素个数与最短的列表一致
    for ticket,x in zip(day_tickets,xs):   # ticket是day_tickets列表的值,x是xs的值
        plt.annotate(ticket,xy=(x,ticket),xytext=(x-0.2,ticket+0.1))


# 设置X轴信息
plt.xticks(7*xticks,mdf.columns,fontproperties=font4,size=15)

#设置X,Y轴名字
plt.ylabel('票房/亿',fontproperties=font4,size=25)
plt.xlabel('影片名字',fontproperties=font4,size=25)

# 设置标题
plt.title("五日票房数据",fontproperties=font4,size=30)

# 设置图例
font4.set_size(15) # 图例无size属性,可以在字体设置font4中改大小(或者font.set_size():只改图例
plt.legend(prop=font4)  # 根据bar()函数的中的label标签进行设置,不可缺少

# 设置网格
plt.grid()

# 只保留图形信息
plt.show()

Matplotlib绘制条形图的方法你知道吗

四、堆叠条形图绘制

堆叠条形图就是在已有数据基础位置上进行绘制图形,使用bottom参数,以已有数据作为新数据的基地进行新数据的绘制,可以达到调整条形图的位置的目的。

示例:

# 男女不同组别的等分情况
menMeans = (20, 35, 30, 35, 27)
womenMeans = (25, 32, 34, 20, 25)
groupNames = ('G1','G2','G3','G4','G5')

xs = np.arange(len(menMeans))  # 有多少个组

font5 = font_manager.FontProperties(fname='C:\Windows\Fonts\STSONG.TTF',size=16)

plt.figure(figsize=(15,7))

# 绘制男性得分
plt.bar(xs,menMeans,label='男性得分',width=0.4)

# 绘制女性得分,以男性得分的最大值为基底
plt.bar(xs,womenMeans,bottom=menMeans,label='女性得分',width=0.4)

#设置图例
plt.legend(prop=font5)  # 根据bar()函数的中的label标签进行设置

# 设置X轴刻度名称
plt.xticks(xs,groupNames)

# 设置标签
plt.xlabel("组别",fontproperties=font5,size=23)
plt.ylabel("得分",fontproperties=font5,size=23)

# 设置标题
plt.title("男女不同组别得分",fontproperties=font5,size=28)

# 只保留图形
plt.show()

Matplotlib绘制条形图的方法你知道吗

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注三水点靠木的更多内容! 

Python 相关文章推荐
在Python的Django框架中实现Hacker News的一些功能
Apr 17 Python
深入解析Python中的urllib2模块
Nov 13 Python
python中requests小技巧
May 10 Python
python跳过第一行快速读取文件内容的实例
Jul 12 Python
[原创]Python入门教程1. 基本运算【四则运算、变量、math模块等】
Oct 28 Python
对python借助百度云API对评论进行观点抽取的方法详解
Feb 21 Python
python导入坐标点的具体操作
May 10 Python
python装饰器常见使用方法分析
Jun 26 Python
Python类绑定方法及非绑定方法实例解析
Oct 09 Python
Python机器学习之逻辑回归
May 11 Python
Python 可迭代对象 iterable的具体使用
Aug 07 Python
python自动化测试通过日志3分钟定位bug
Nov 20 Python
Python的代理类实现,控制访问和修改属性的权限你都了解吗
Mar 21 #Python
python的netCDF4批量处理NC格式文件的操作方法
Python&Matlab实现灰狼优化算法的示例代码
Python学习之时间包使用教程详解
Mar 21 #Python
Python数据结构之队列详解
Python学习之os包使用教程详解
分享几种python 变量合并方法
Mar 20 #Python
You might like
thinkphp判断访客为手机端或PC端的方法
2014/11/24 PHP
PHP与jquery实时显示网站在线人数实例详解
2016/12/02 PHP
Prototype使用指南之array.js
2007/01/10 Javascript
JavaScript 事件系统
2010/07/22 Javascript
js change,propertychange,input事件小议
2011/12/20 Javascript
javascript类型转换示例
2014/04/29 Javascript
JQuery异步获取返回值中文乱码的解决方法
2015/01/29 Javascript
AngularJS单选框及多选框实现双向动态绑定
2016/01/13 Javascript
Java遍历集合方法分析(实现原理、算法性能、适用场合)
2016/04/25 Javascript
jQuery的框架介绍
2016/05/11 Javascript
js获取当前页的URL与window.location.href简单方法
2017/02/13 Javascript
JS/jQuery实现获取时间的方法及常用类完整示例
2019/03/07 jQuery
JS实现页面跳转与刷新的方法汇总
2019/08/30 Javascript
基于iview-admin实现动态路由的示例代码
2019/10/02 Javascript
vue实现页面切换滑动效果
2020/06/29 Javascript
Nuxt.js 静态资源和打包的操作
2020/11/06 Javascript
[03:31]DOTA2英雄基础教程 大地之灵
2013/12/17 DOTA
[40:50]2014 DOTA2国际邀请赛中国区预选赛 5 23 CIS VS LGD第四场
2014/05/24 DOTA
[00:32]DOTA2上海特级锦标赛 COL战队宣传片
2016/03/04 DOTA
[02:45]2016年中国刀塔全程回顾,完美“圣”典即将上演
2016/12/15 DOTA
详解python之多进程和进程池(Processing库)
2017/06/09 Python
python使用xlrd模块读取xlsx文件中的ip方法
2019/01/11 Python
pyqt5中QThread在使用时出现重复emit的实例
2019/06/21 Python
python中pytest收集用例规则与运行指定用例详解
2019/06/27 Python
python 用所有标点符号分隔句子的示例
2019/07/15 Python
使用Python来做一个屏幕录制工具的操作代码
2020/01/18 Python
python虚拟环境模块venv使用及示例
2020/03/04 Python
python3.7中安装paddleocr及paddlepaddle包的多种方法
2020/11/27 Python
解决CSS3 transition-delay 属性默认值0不带单位失效的问题
2020/10/29 HTML / CSS
html5定位并在百度地图上显示的示例
2014/04/27 HTML / CSS
外企求职信范文分享
2013/12/31 职场文书
迟到检讨书800字
2014/01/13 职场文书
七年级政治教学反思
2014/02/03 职场文书
财政局个人总结
2015/03/04 职场文书
2015年远程教育工作总结
2015/05/20 职场文书
运动会100米加油稿
2015/07/21 职场文书