机器学习python实战之决策树


Posted in Python onNovember 01, 2017

决策树原理:从数据集中找出决定性的特征对数据集进行迭代划分,直到某个分支下的数据都属于同一类型,或者已经遍历了所有划分数据集的特征,停止决策树算法。

每次划分数据集的特征都有很多,那么我们怎么来选择到底根据哪一个特征划分数据集呢?这里我们需要引入信息增益和信息熵的概念。

一、信息增益

划分数据集的原则是:将无序的数据变的有序。在划分数据集之前之后信息发生的变化称为信息增益。知道如何计算信息增益,我们就可以计算根据每个特征划分数据集获得的信息增益,选择信息增益最高的特征就是最好的选择。首先我们先来明确一下信息的定义:符号xi的信息定义为 l(xi)=-log2 p(xi),p(xi)为选择该类的概率。那么信息源的熵H=-∑p(xi)·log2 p(xi)。根据这个公式我们下面编写代码计算香农熵

def calcShannonEnt(dataSet):
 NumEntries = len(dataSet)
 labelsCount = {}
 for i in dataSet:
  currentlabel = i[-1]
  if currentlabel not in labelsCount.keys():
   labelsCount[currentlabel]=0
  labelsCount[currentlabel]+=1
 ShannonEnt = 0.0
 for key in labelsCount:
  prob = labelsCount[key]/NumEntries
  ShannonEnt -= prob*log(prob,2)
 return ShannonEnt

上面的自定义函数我们需要在之前导入log方法,from math import log。 我们可以先用一个简单的例子来测试一下

def createdataSet():
 #dataSet = [['1','1','yes'],['1','0','no'],['0','1','no'],['0','0','no']]
 dataSet = [[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,0,'no']]
 labels = ['no surfacing','flippers']
 return dataSet,labels

机器学习python实战之决策树

这里的熵为0.811,当我们增加数据的类别时,熵会增加。这里更改后的数据集的类别有三种‘yes'、‘no'、‘maybe',也就是说数据越混乱,熵就越大。

机器学习python实战之决策树

分类算法出了需要计算信息熵,还需要划分数据集。决策树算法中我们对根据每个特征划分的数据集计算一次熵,然后判断按照哪个特征划分是最好的划分方式。

def splitDataSet(dataSet,axis,value):
 retDataSet = []
 for featVec in dataSet:
  if featVec[axis] == value:
   reducedfeatVec = featVec[:axis]
   reducedfeatVec.extend(featVec[axis+1:])
   retDataSet.append(reducedfeatVec)
 return retDataSet

axis表示划分数据集的特征,value表示特征的返回值。这里需要注意extend方法和append方法的区别。举例来说明这个区别

机器学习python实战之决策树

下面我们测试一下划分数据集函数的结果:

机器学习python实战之决策树

axis=0,value=1,按myDat数据集的第0个特征向量是否等于1进行划分。

接下来我们将遍历整个数据集,对每个划分的数据集计算香农熵,找到最好的特征划分方式

def choosebestfeatureToSplit(dataSet):
 Numfeatures = len(dataSet)-1
 BaseShannonEnt = calcShannonEnt(dataSet)
 bestInfoGain=0.0
 bestfeature = -1
 for i in range(Numfeatures):
  featlist = [example[i] for example in dataSet]
  featSet = set(featlist)
  newEntropy = 0.0
  for value in featSet:
   subDataSet = splitDataSet(dataSet,i,value)
   prob = len(subDataSet)/len(dataSet)
   newEntropy += prob*calcShannonEnt(subDataSet) 
  infoGain = BaseShannonEnt-newEntropy
  if infoGain>bestInfoGain:
   bestInfoGain=infoGain
   bestfeature = i
 return bestfeature

信息增益是熵的减少或数据无序度的减少。最后比较所有特征中的信息增益,返回最好特征划分的索引。函数测试结果为

机器学习python实战之决策树

接下来开始递归构建决策树,我们需要在构建前计算列的数目,查看算法是否使用了所有的属性。这个函数跟跟第二章的calssify0采用同样的方法

def majorityCnt(classlist):
 ClassCount = {}
 for vote in classlist:
  if vote not in ClassCount.keys():
   ClassCount[vote]=0
  ClassCount[vote]+=1
 sortedClassCount = sorted(ClassCount.items(),key = operator.itemgetter(1),reverse = True)
 return sortedClassCount[0][0]

def createTrees(dataSet,labels):
 classList = [example[-1] for example in dataSet]
 if classList.count(classList[0]) == len(classList):
  return classList[0]
 if len(dataSet[0])==1:
  return majorityCnt(classList)
 bestfeature = choosebestfeatureToSplit(dataSet)
 bestfeatureLabel = labels[bestfeature]
 myTree = {bestfeatureLabel:{}}
 del(labels[bestfeature])
 featValue = [example[bestfeature] for example in dataSet]
 uniqueValue = set(featValue)
 for value in uniqueValue:
  subLabels = labels[:]
  myTree[bestfeatureLabel][value] = createTrees(splitDataSet(dataSet,bestfeature,value),subLabels)
 return myTree

最终决策树得到的结果如下:

机器学习python实战之决策树

有了如上的结果,我们看起来并不直观,所以我们接下来用matplotlib注解绘制树形图。matplotlib提供了一个注解工具annotations,它可以在数据图形上添加文本注释。我们先来测试一下这个注解工具的使用。

import matplotlib.pyplot as plt
decisionNode = dict(boxstyle = 'sawtooth',fc = '0.8')
leafNode = dict(boxstyle = 'sawtooth',fc = '0.8')
arrow_args = dict(arrowstyle = '<-')

def plotNode(nodeTxt,centerPt,parentPt,nodeType):
 createPlot.ax1.annotate(nodeTxt,xy = parentPt,xycoords = 'axes fraction',\
       xytext = centerPt,textcoords = 'axes fraction',\
       va = 'center',ha = 'center',bbox = nodeType,\
       arrowprops = arrow_args)
 
def createPlot():
 fig = plt.figure(1,facecolor = 'white')
 fig.clf()
 createPlot.ax1 = plt.subplot(111,frameon = False)
 plotNode('test1',(0.5,0.1),(0.1,0.5),decisionNode)
 plotNode('test2',(0.8,0.1),(0.3,0.8),leafNode)
 plt.show()

机器学习python实战之决策树

测试过这个小例子之后我们就要开始构建注解树了。虽然有xy坐标,但在如何放置树节点的时候我们会遇到一些麻烦。所以我们需要知道有多少个叶节点,树的深度有多少层。下面的两个函数就是为了得到叶节点数目和树的深度,两个函数有相同的结构,从第一个关键字开始遍历所有的子节点,使用type()函数判断子节点是否为字典类型,若为字典类型,则可以认为该子节点是一个判断节点,然后递归调用函数getNumleafs(),使得函数遍历整棵树,并返回叶子节点数。第2个函数getTreeDepth()计算遍历过程中遇到判断节点的个数。该函数的终止条件是叶子节点,一旦到达叶子节点,则从递归调用中返回,并将计算树深度的变量加一

def getNumleafs(myTree):
 numLeafs=0
 key_sorted= sorted(myTree.keys())
 firstStr = key_sorted[0]
 secondDict = myTree[firstStr]
 for key in secondDict.keys():
  if type(secondDict[key]).__name__=='dict':
   numLeafs+=getNumleafs(secondDict[key])
  else:
   numLeafs+=1
 return numLeafs

def getTreeDepth(myTree):
 maxdepth=0
 key_sorted= sorted(myTree.keys())
 firstStr = key_sorted[0]
 secondDict = myTree[firstStr]
 for key in secondDict.keys():
  if type(secondDict[key]).__name__ == 'dict':
   thedepth=1+getTreeDepth(secondDict[key])
  else:
   thedepth=1
  if thedepth>maxdepth:
   maxdepth=thedepth
 return maxdepth

测试结果如下

机器学习python实战之决策树

我们先给出最终的决策树图来验证上述结果的正确性

机器学习python实战之决策树

可以看出树的深度确实是有两层,叶节点的数目是3。接下来我们给出绘制决策树图的关键函数,结果就得到上图中决策树。

def plotMidText(cntrPt,parentPt,txtString):
 xMid = (parentPt[0]-cntrPt[0])/2.0+cntrPt[0]
 yMid = (parentPt[1]-cntrPt[1])/2.0+cntrPt[1]
 createPlot.ax1.text(xMid,yMid,txtString)
 
def plotTree(myTree,parentPt,nodeTxt):
 numLeafs = getNumleafs(myTree)
 depth = getTreeDepth(myTree)
 key_sorted= sorted(myTree.keys())
 firstStr = key_sorted[0]
 cntrPt = (plotTree.xOff+(1.0+float(numLeafs))/2.0/plotTree.totalW,plotTree.yOff)
 plotMidText(cntrPt,parentPt,nodeTxt)
 plotNode(firstStr,cntrPt,parentPt,decisionNode)
 secondDict = myTree[firstStr]
 plotTree.yOff -= 1.0/plotTree.totalD
 for key in secondDict.keys():
  if type(secondDict[key]).__name__ == 'dict':
   plotTree(secondDict[key],cntrPt,str(key))
  else:
   plotTree.xOff+=1.0/plotTree.totalW
   plotNode(secondDict[key],(plotTree.xOff,plotTree.yOff),cntrPt,leafNode)
   plotMidText((plotTree.xOff,plotTree.yOff),cntrPt,str(key))
 plotTree.yOff+=1.0/plotTree.totalD
 
def createPlot(inTree):
 fig = plt.figure(1,facecolor = 'white')
 fig.clf()
 axprops = dict(xticks = [],yticks = [])
 createPlot.ax1 = plt.subplot(111,frameon = False,**axprops)
 plotTree.totalW = float(getNumleafs(inTree))
 plotTree.totalD = float(getTreeDepth(inTree))
 plotTree.xOff = -0.5/ plotTree.totalW; plotTree.yOff = 1.0
 plotTree(inTree,(0.5,1.0),'')
 plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python下使用Psyco模块优化运行速度
Apr 05 Python
python下MySQLdb用法实例分析
Jun 08 Python
python正则分析nginx的访问日志
Jan 17 Python
Python编程使用*解包和itertools.product()求笛卡尔积的方法
Dec 18 Python
基于python的图片修复程序(实现水印去除)
Jun 04 Python
python实现五子棋小程序
Jun 18 Python
python:按行读入,排序然后输出的方法
Jul 20 Python
在pandas中遍历DataFrame行的实现方法
Oct 23 Python
tensorflow 变长序列存储实例
Jan 20 Python
python 给图像添加透明度(alpha通道)
Apr 09 Python
python 三边测量定位的实现代码
Apr 22 Python
Python面向对象之内置函数相关知识总结
Jun 24 Python
详解Python开发中如何使用Hook技巧
Nov 01 #Python
python利用标准库如何获取本地IP示例详解
Nov 01 #Python
你眼中的Python大牛 应该都有这份书单
Oct 31 #Python
Python生成数字图片代码分享
Oct 31 #Python
python使用标准库根据进程名如何获取进程的pid详解
Oct 31 #Python
Python列表删除的三种方法代码分享
Oct 31 #Python
Python文件的读写和异常代码示例
Oct 31 #Python
You might like
如何使用PHP获取网络上文件
2006/10/09 PHP
php实现读取和写入tab分割的文件
2015/06/01 PHP
PHP利用imagick生成组合缩略图
2016/02/19 PHP
PHP数组与字符串互相转换实例
2020/05/05 PHP
JavaScript.The.Good.Parts阅读笔记(二)作用域&amp;闭包&amp;减缓全局空间污染
2010/11/16 Javascript
JavaScript 放大镜 放大倍率和视窗尺寸
2011/05/09 Javascript
基于jquery的不规则矩形的排列实现代码
2012/04/16 Javascript
js中的push和join方法使用介绍
2013/10/08 Javascript
jquery+css实现绚丽的横向二级下拉菜单-附源码下载
2015/08/23 Javascript
第十章之巨幕页头缩略图与警告框组件
2016/04/25 Javascript
JavaScript实现阿拉伯数字和中文数字互相转换
2016/06/12 Javascript
jQuery时间日期三级联动(推荐)
2016/11/27 Javascript
Angular的MVC和作用域
2016/12/26 Javascript
jQuery实现CheckBox全选、全不选功能
2017/01/11 Javascript
jQuery插件select2利用ajax高效查询大数据列表(可搜索、可分页)
2017/05/19 jQuery
Node.js利用断言模块assert进行单元测试的方法
2017/09/28 Javascript
webpack vue 项目打包生成的文件,资源文件报404问题的修复方法(总结篇)
2018/01/09 Javascript
基于vue-cli 打包时抽离项目相关配置文件详解
2018/03/07 Javascript
在Mac下彻底卸载node和npm的方法
2018/05/16 Javascript
Node.js一行代码实现静态文件服务器的方法步骤
2019/05/07 Javascript
Easyui 去除jquery-easui tab页div自带滚动条的方法
2019/05/10 jQuery
测试、预发布后用python检测网页是否有日常链接
2014/06/03 Python
Python-嵌套列表list的全面解析
2016/06/08 Python
批量获取及验证HTTP代理的Python脚本
2017/04/23 Python
python中实现延时回调普通函数示例代码
2017/09/08 Python
python获取文件真实链接的方法,针对于302返回码
2018/05/14 Python
python logging模块书写日志以及日志分割详解
2019/07/22 Python
英国工具中心:UK Tool Centre
2017/07/10 全球购物
JACK & JONES瑞典官方网站:杰克琼斯欧式风格男装
2017/12/23 全球购物
乡镇食品安全责任书
2014/07/28 职场文书
违反交通法规检讨书
2014/09/10 职场文书
2016年寒假学习心得体会
2015/10/09 职场文书
《角的初步认识》教学反思
2016/02/17 职场文书
写作之关于描写老人的好段摘抄
2019/11/14 职场文书
关于vue-router-link选择样式设置
2022/04/30 Vue.js
python绘制云雨图raincloud plot
2022/08/05 Python