Python实现简单得递归下降Parser


Posted in Python onMay 02, 2022

1. 算术运算表达式求值

在上一篇博文《Python如何用re模块实现简易tokenizer》中,我们介绍了用正则表达式来匹配对应的模式,以实现简单的分词器。然而,正则表达式不是万能的,它本质上是一种有限状态机(finite state machine,FSM), 无法处理含有递归语法的文本,比如算术运算表达式。

要解析这类文本,需要另外一种特定的语法规则。我们这里介绍可以表示上下文无关文法(context free grammer)的语法规则巴科斯范式(BNF)和扩展巴科斯范式(EBNF)。实际上,小到一个算术运算表达式,大到几乎所有程序设计语言,都是通过上下文无关文法来定义的。

对于简单的算术运算表达式,假定我们已经用分词技术将其转化为输入的tokens流,如NUM+NUM*NUM(分词方法参见上一篇博文)。

在此基础上,我们定义BNF规则定义如下:

expr ::= expr + term
     | expr - term 
     | term
term ::= term * factor
     | term / factor
     | factor
factor ::= (expr)
     | NUM

当然,这种计法还不够简洁明了,我们实际采用的为EBNF形式:

expr ::= term { (+|-) term }*
term ::= factor { (*|/) factor }*
factor ::= (expr) 
       | NUM

BNF和EBNF每一条规则(形如::=的式子)都可以看做是一种替换,即左侧的符号可以被右侧的符号所替换。而解析的过程中我们尝试将输入文本同语法规则做匹配,通过BNF/EBNF来完成各种替换和扩展。其中,EBNF中包含在{...}*中的规则是可选的,*意味着零个或多个重复项(参考正则表达式)。

下图形象地展示了递归下降解析器(parser)中“递归”和“下降”部分和ENBF的关系:

Python实现简单得递归下降Parser

在实际的解析过程中,我们对tokens流从左到右进行扫描,在扫描的过程中处理token,如果卡住就产生一个语法错误。对于规则,我们将每一条语法规则转变为一个函数或方法,比如上面的ENBF规则就转换为下列的方法:

class ExpressionEvaluator():
    ...
    def expr(self):
        ...
    def term(self):
        ...
    def factor(self):
        ...

在调用某个规则对应方法的过程中,如果我们发现接下来的符号需要采用另一个规则来匹配,则我们就会“下降”到另一个规则方法(如在expr中调用term,term中调用factor),则也就是递归下降中“下降”的部分。

有时也会调用已经在执行的方法(比如在expr中调用term,term中调用factor后,又在factor中调用expr,相当于一条衔尾蛇),这也就是递归下降中“递归”的部分。

对于语法中出现的重复部分(例如expr ::= term { (+|-) term }*),我们则通过while循环来实现。

下面我们来看具体的代码实现。首先是分词部分,我们参照上一篇介绍分词博客的代码。

import re
import collections

# 定义匹配token的模式
NUM = r'(?P<NUM>\d+)'  # \d表示匹配数字,+表示任意长度
PLUS = r'(?P<PLUS>\+)'  # 注意转义
MINUS = r'(?P<MINUS>-)'
TIMES = r'(?P<TIMES>\*)'  # 注意转义
DIVIDE = r'(?P<DIVIDE>/)'
LPAREN = r'(?P<LPAREN>\()'  # 注意转义
RPAREN = r'(?P<RPAREN>\))'  # 注意转义
WS = r'(?P<WS>\s+)'  # 别忘记空格,\s表示空格,+表示任意长度

master_pat = re.compile(
    '|'.join([NUM, PLUS, MINUS, TIMES, DIVIDE, LPAREN, RPAREN, WS]))

# Tokenizer
Token = collections.namedtuple('Token', ['type', 'value'])


def generate_tokens(text):
    scanner = master_pat.scanner(text)
    for m in iter(scanner.match, None):
        tok = Token(m.lastgroup, m.group())
        if tok.type != 'WS':  # 过滤掉空格符
            yield tok

下面是表达式求值器的具体实现:

class ExpressionEvaluator():
    """ 递归下降的Parser实现,每个语法规则都对应一个方法,
    使用 ._accept()方法来测试并接受当前处理的token,不匹配不报错,
    使用 ._except()方法来测试当前处理的token,并在不匹配的时候抛出语法错误
    """

    def parse(self, text):
        """ 对外调用的接口 """
        self.tokens = generate_tokens(text)
        self.tok, self.next_tok = None, None  # 已匹配的最后一个token,下一个即将匹配的token
        self._next()  # 转到下一个token
        return self.expr()  # 开始递归

    def _next(self):
        """ 转到下一个token """
        self.tok, self.next_tok = self.next_tok, next(self.tokens, None)

    def _accept(self, tok_type):
        """ 如果下一个token与tok_type匹配,则转到下一个token """
        if self.next_tok and self.next_tok.type == tok_type:
            self._next()
            return True
        else:
            return False

    def _except(self, tok_type):
        """ 检查是否匹配,如果不匹配则抛出异常 """
        if not self._accept(tok_type):
            raise SyntaxError("Excepted"+tok_type)

    # 接下来是语法规则,每个语法规则对应一个方法
    
    def expr(self):
        """ 对应规则: expression ::= term { ('+'|'-') term }* """
        exprval = self.term() # 取第一项
        while self._accept("PLUS") or self._accept("DIVIDE"): # 如果下一项是"+"或"-"
            op = self.tok.type 
            # 再取下一项,即运算符右值
            right = self.term() 
            if op == "PLUS":
                exprval += right
            elif op == "MINUS":
                exprval -= right
        return exprval
            
    def term(self):
        """ 对应规则: term ::= factor { ('*'|'/') factor }* """
        
        termval = self.factor() # 取第一项
        while self._accept("TIMES") or self._accept("DIVIDE"): # 如果下一项是"+"或"-"
            op = self.tok.type 
            # 再取下一项,即运算符右值
            right = self.factor() 
            if op == "TIMES":
                termval *= right
            elif op == "DIVIDE":
                termval /= right
        return termval          
            
        
    def factor(self):
        """ 对应规则: factor ::= NUM | ( expr ) """
        if self._accept("NUM"): # 递归出口
            return int(self.tok.value)
        elif self._accept("LPAREN"):
            exprval = self.expr() # 继续递归下去求表达式值
            self._except("RPAREN") # 别忘记检查是否有右括号,没有则抛出异常
            return exprval
        else:
            raise SyntaxError("Expected NUMBER or LPAREN")

我们输入以下表达式进行测试:

e = ExpressionEvaluator()
print(e.parse("2"))
print(e.parse("2+3"))
print(e.parse("2+3*4"))
print(e.parse("2+(3+4)*5"))

求值结果如下:

2
5
14
37

如果我们输入的文本不符合语法规则:

print(e.parse("2 + (3 + * 4)"))

则会抛出SyntaxError异常:Expected NUMBER or LPAREN
综上,可见我们的表达式求值算法运行正确。

2. 生成表达式树

上面我们是得到表达式的结果,但是如果我们想分析表达式的结构,生成一棵简单的表达式解析树呢?那么我们需要对上述类的方法做一定修改:

class ExpressionTreeBuilder(ExpressionEvaluator):
    def expr(self):
            """ 对应规则: expression ::= term { ('+'|'-') term }* """
            exprval = self.term() # 取第一项
            while self._accept("PLUS") or self._accept("DIVIDE"): # 如果下一项是"+"或"-"
                op = self.tok.type 
                # 再取下一项,即运算符右值
                right = self.term() 
                if op == "PLUS":
                    exprval = ('+', exprval, right)
                elif op == "MINUS":
                    exprval -= ('-', exprval, right)
            return exprval
    
    def term(self):
        """ 对应规则: term ::= factor { ('*'|'/') factor }* """
        
        termval = self.factor() # 取第一项
        while self._accept("TIMES") or self._accept("DIVIDE"): # 如果下一项是"+"或"-"
            op = self.tok.type 
            # 再取下一项,即运算符右值
            right = self.factor() 
            if op == "TIMES":
                termval = ('*', termval, right)
            elif op == "DIVIDE":
                termval = ('/', termval, right)
        return termval          
    
    def factor(self):
        """ 对应规则: factor ::= NUM | ( expr ) """
        if self._accept("NUM"): # 递归出口
            return int(self.tok.value) # 字符串转整形
        elif self._accept("LPAREN"):
            exprval = self.expr() # 继续递归下去求表达式值
            self._except("RPAREN") # 别忘记检查是否有右括号,没有则抛出异常
            return exprval
        else:
            raise SyntaxError("Expected NUMBER or LPAREN")

输入下列表达式测试一下:

print(e.parse("2+3"))
print(e.parse("2+3*4"))
print(e.parse("2+(3+4)*5"))
print(e.parse('2+3+4'))

以下是生成结果:

('+', 2, 3)
('+', 2, ('*', 3, 4))
('+', 2, ('*', ('+', 3, 4), 5))
('+', ('+', 2, 3), 4)

可以看到表达式树生成正确。

我们上面的这个例子非常简单,但递归下降的解析器也可以用来实现相当复杂的解析器,例如Python代码就是通过一个递归下降解析器解析的。您要是对此跟感兴趣可以检查Python源码中的Grammar文件来一探究竟。然而,下面我们接着会看到,自己动手写一个解析器会面对各种陷阱和挑战。

左递归和运算符优先级陷阱

任何涉及左递归形式的语法规则,都没法用递归下降parser来解决。所谓左递归,即规则式子右侧最左边的符号是规则头,比如对于以下规则:

items ::= items ',' item 
      | item

完成该解析你可能会定义以下方法:

def items(self):
    itemsval = self.items() # 取第一项,然而此处会无穷递归!
    if itemsval and self._accept(','):
        itemsval.append(self.item())
    else:
        itemsval = [self.item()]

这样做会在第一行就无穷地调用self.items()从而产生无穷递归错误。

还有一种是语法规则自身的错误,比如运算符优先级。我们如果忽视运算符优先级直接将表达式简化如下:

expr ::= factor { ('+'|'-'|'*'|'/') factor }*
factor ::= '(' expr ')'
       | NUM
PYTHON 复制 全屏

这个语法从技术上可以实现,但是没有遵守计算顺序约定,导致"3+4*5"的运算结果为35,而不是预期的23。故此处需要用独立的expr和term规则来确保计算结果的正确性。

3. 相关包

最后,对于真正复杂的语法解析,建议采用PyParsing或PLY这样的解析工具。如果你对Python代码的抽象语法树感兴趣,可以看下Python自带的ast模块。

参考

总结

到此这篇关于Python实现简单得递归下降Parser的文章就介绍到这了!


Tags in this post...

Python 相关文章推荐
python中的yield使用方法
Feb 11 Python
推荐11个实用Python库
Jan 23 Python
Python使用修饰器执行函数的参数检查功能示例
Sep 26 Python
Python中顺序表的实现简单代码分享
Jan 09 Python
python可视化实现代码
Jan 15 Python
Python数据类型之Dict字典实例详解
May 07 Python
python之pyqt5通过按钮改变Label的背景颜色方法
Jun 13 Python
python实现飞行棋游戏
Feb 05 Python
Python的3种运行方式:命令行窗口、Python解释器、IDLE的实现
Oct 10 Python
Python从MySQL数据库中面抽取试题,生成试卷
Jan 14 Python
Python 使用dict实现switch的操作
Apr 07 Python
python ansible自动化运维工具执行流程
Jun 24 Python
使用Python开发贪吃蛇游戏 SnakeGame
Apr 30 #Python
使用Python开发冰球小游戏
详解Python中的for循环
Python采集壁纸并实现炫轮播
Apr 30 #Python
Python循环之while无限迭代
如何Python使用re模块实现okenizer
Apr 30 #Python
如何使用python包中的sched事件调度器
Apr 30 #Python
You might like
来自PHP.NET的入门教程
2006/10/09 PHP
无刷新动态加载数据 滚动条加载适合评论等页面
2013/10/16 PHP
Laravel 5框架学习之环境与配置
2015/04/08 PHP
php实现的生成排列算法示例
2019/07/25 PHP
Mootools 1.2教程 同时进行多个形变动画
2009/09/15 Javascript
Node.js 学习笔记之简介、安装及配置
2015/03/03 Javascript
jQuery zTree加载树形菜单功能
2016/02/25 Javascript
无缝滚动的简单实现代码(推荐)
2016/06/07 Javascript
Google 地图事件实例讲解
2016/08/06 Javascript
Bootstrap如何创建表单
2016/10/21 Javascript
BootStrap实现响应式布局导航栏折叠隐藏效果(在小屏幕、手机屏幕浏览时自动折叠隐藏)
2016/11/30 Javascript
nodejs遍历文件夹下并操作HTML/CSS/JS/PNG/JPG的方法
2018/11/01 NodeJs
跨域解决之JSONP和CORS的详细介绍
2018/11/21 Javascript
详解Vue组件之作用域插槽
2018/11/22 Javascript
使用JavaScript和MQTT开发物联网应用示例解析
2020/08/07 Javascript
[15:09]DOTA2国际邀请赛采访专栏:Loda
2013/08/06 DOTA
Python写的贪吃蛇游戏例子
2014/06/16 Python
Python中使用hashlib模块处理算法的教程
2015/04/28 Python
Python在线运行代码助手
2016/07/15 Python
教你用Python写安卓游戏外挂
2018/01/11 Python
django允许外部访问的实例讲解
2018/05/14 Python
Python实现变声器功能(萝莉音御姐音)
2019/12/05 Python
TFRecord文件查看包含的所有Features代码
2020/02/17 Python
Python中if有多个条件处理方法
2020/02/26 Python
Django封装交互接口代码
2020/07/12 Python
倩碧香港官方网站:Clinique香港
2017/11/13 全球购物
个人简历自我鉴定
2013/10/11 职场文书
开办饭店创业计划书
2013/12/28 职场文书
关于迟到的检讨书
2014/01/26 职场文书
全国道德模范事迹
2014/02/01 职场文书
简历中的自我评价范文
2014/02/05 职场文书
中学生自我评价范文
2014/02/08 职场文书
消防工作实施方案
2014/06/09 职场文书
先进员工事迹材料
2014/12/20 职场文书
感恩教师节主题班会
2015/08/12 职场文书
python树莓派通过队列实现进程交互的程序分析
2021/07/04 Python