关于Tensorflow 模型持久化详解


Posted in Python onFebruary 12, 2020

当我们使用 tensorflow 训练神经网络的时候,模型持久化对于我们的训练有很重要的作用。

如果我们的神经网络比较复杂,训练数据比较多,那么我们的模型训练就会耗时很长,如果在训练过程中出现某些不可预计的错误,导致我们的训练意外终止,那么我们将会前功尽弃。为了避免这个问题,我们就可以通过模型持久化(保存为CKPT格式)来暂存我们训练过程中的临时数据。

如果我们训练的模型需要提供给用户做离线的预测,那么我们只需要前向传播的过程,只需得到预测值就可以了,这个时候我们就可以通过模型持久化(保存为PB格式)只保存前向传播中需要的变量并将变量的值固定下来,这个时候只需用户提供一个输入,我们就可以通过模型得到一个输出给用户。

保存为 CKPT 格式的模型

定义运算过程

声明并得到一个 Saver

通过 Saver.save 保存模型

# coding=UTF-8 支持中文编码格式
import tensorflow as tf
import shutil
import os.path

MODEL_DIR = "model/ckpt"
MODEL_NAME = "model.ckpt"

# if os.path.exists(MODEL_DIR): 删除目录
#   shutil.rmtree(MODEL_DIR)
if not tf.gfile.Exists(MODEL_DIR): #创建目录
  tf.gfile.MakeDirs(MODEL_DIR)

#下面的过程你可以替换成CNN、RNN等你想做的训练过程,这里只是简单的一个计算公式
input_holder = tf.placeholder(tf.float32, shape=[1], name="input_holder") #输入占位符,并指定名字,后续模型读取可能会用的
W1 = tf.Variable(tf.constant(5.0, shape=[1]), name="W1")
B1 = tf.Variable(tf.constant(1.0, shape=[1]), name="B1")
_y = (input_holder * W1) + B1
predictions = tf.greater(_y, 50, name="predictions") #输出节点名字,后续模型读取会用到,比50大返回true,否则返回false

init = tf.global_variables_initializer()
saver = tf.train.Saver() #声明saver用于保存模型

with tf.Session() as sess:
  sess.run(init)
  print "predictions : ", sess.run(predictions, feed_dict={input_holder: [10.0]}) #输入一个数据测试一下
  saver.save(sess, os.path.join(MODEL_DIR, MODEL_NAME)) #模型保存
  print("%d ops in the final graph." % len(tf.get_default_graph().as_graph_def().node)) #得到当前图有几个操作节点

for op in tf.get_default_graph().get_operations(): #打印模型节点信息
  print (op.name, op.values())

运行后生成的文件如下:

关于Tensorflow 模型持久化详解

checkpoint : 记录目录下所有模型文件列表
ckpt.data : 保存模型中每个变量的取值
ckpt.meta : 保存整个计算图的结构

保存为 PB 格式模型

定义运算过程
通过 get_default_graph().as_graph_def() 得到当前图的计算节点信息
通过 graph_util.convert_variables_to_constants 将相关节点的values固定
通过 tf.gfile.GFile 进行模型持久化

# coding=UTF-8
import tensorflow as tf
import shutil
import os.path
from tensorflow.python.framework import graph_util


# MODEL_DIR = "model/pb"
# MODEL_NAME = "addmodel.pb"

# if os.path.exists(MODEL_DIR): 删除目录
#   shutil.rmtree(MODEL_DIR)
#
# if not tf.gfile.Exists(MODEL_DIR): #创建目录
#   tf.gfile.MakeDirs(MODEL_DIR)

output_graph = "model/pb/add_model.pb"

#下面的过程你可以替换成CNN、RNN等你想做的训练过程,这里只是简单的一个计算公式
input_holder = tf.placeholder(tf.float32, shape=[1], name="input_holder")
W1 = tf.Variable(tf.constant(5.0, shape=[1]), name="W1")
B1 = tf.Variable(tf.constant(1.0, shape=[1]), name="B1")
_y = (input_holder * W1) + B1
# predictions = tf.greater(_y, 50, name="predictions") #比50大返回true,否则返回false
predictions = tf.add(_y, 10,name="predictions") #做一个加法运算

init = tf.global_variables_initializer()

with tf.Session() as sess:
  sess.run(init)
  print "predictions : ", sess.run(predictions, feed_dict={input_holder: [10.0]})
  graph_def = tf.get_default_graph().as_graph_def() #得到当前的图的 GraphDef 部分,通过这个部分就可以完成重输入层到输出层的计算过程

  output_graph_def = graph_util.convert_variables_to_constants( # 模型持久化,将变量值固定
    sess,
    graph_def,
    ["predictions"] #需要保存节点的名字
  )
  with tf.gfile.GFile(output_graph, "wb") as f: # 保存模型
    f.write(output_graph_def.SerializeToString()) # 序列化输出
  print("%d ops in the final graph." % len(output_graph_def.node))
  print (predictions)

# for op in tf.get_default_graph().get_operations(): 打印模型节点信息
#   print (op.name)

*GraphDef:这个属性记录了tensorflow计算图上节点的信息。

关于Tensorflow 模型持久化详解

add_model.pb : 里面保存了重输入层到输出层这个计算过程的计算图和相关变量的值,我们得到这个模型后传入一个输入,既可以得到一个预估的输出值

CKPT 转换成 PB格式

通过传入 CKPT 模型的路径得到模型的图和变量数据
通过 import_meta_graph 导入模型中的图
通过 saver.restore 从模型中恢复图中各个变量的数据
通过 graph_util.convert_variables_to_constants 将模型持久化

# coding=UTF-8
import tensorflow as tf
import os.path
import argparse
from tensorflow.python.framework import graph_util

MODEL_DIR = "model/pb"
MODEL_NAME = "frozen_model.pb"

if not tf.gfile.Exists(MODEL_DIR): #创建目录
  tf.gfile.MakeDirs(MODEL_DIR)

def freeze_graph(model_folder):
  checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
  input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径
  output_graph = os.path.join(MODEL_DIR, MODEL_NAME) #PB模型保存路径

  output_node_names = "predictions" #原模型输出操作节点的名字
  saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True) #得到图、clear_devices :Whether or not to clear the device field for an `Operation` or `Tensor` during import.

  graph = tf.get_default_graph() #获得默认的图
  input_graph_def = graph.as_graph_def() #返回一个序列化的图代表当前的图

  with tf.Session() as sess:
    saver.restore(sess, input_checkpoint) #恢复图并得到数据

    print "predictions : ", sess.run("predictions:0", feed_dict={"input_holder:0": [10.0]}) # 测试读出来的模型是否正确,注意这里传入的是输出 和输入 节点的 tensor的名字,不是操作节点的名字

    output_graph_def = graph_util.convert_variables_to_constants( #模型持久化,将变量值固定
      sess,
      input_graph_def,
      output_node_names.split(",") #如果有多个输出节点,以逗号隔开
    )
    with tf.gfile.GFile(output_graph, "wb") as f: #保存模型
      f.write(output_graph_def.SerializeToString()) #序列化输出
    print("%d ops in the final graph." % len(output_graph_def.node)) #得到当前图有几个操作节点

    for op in graph.get_operations():
      print(op.name, op.values())

if __name__ == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument("model_folder", type=str, help="input ckpt model dir") #命令行解析,help是提示符,type是输入的类型,
  # 这里运行程序时需要带上模型ckpt的路径,不然会报 error: too few arguments
  aggs = parser.parse_args()
  freeze_graph(aggs.model_folder)
  # freeze_graph("model/ckpt") #模型目录

以上这篇关于Tensorflow 模型持久化详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Django中几种重定向方法
Apr 28 Python
Python中处理字符串的相关的len()方法的使用简介
May 19 Python
Python中if __name__ == '__main__'作用解析
Jun 29 Python
Python实现模拟时钟代码推荐
Nov 08 Python
python在非root权限下的安装方法
Jan 23 Python
python安装twisted的问题解析
Aug 21 Python
让代码变得更易维护的7个Python库
Oct 09 Python
python3下载抖音视频的完整代码
Jun 05 Python
python使用writerows写csv文件产生多余空行的处理方法
Aug 01 Python
python如何将两个txt文件内容合并
Oct 18 Python
后端开发使用pycharm的技巧(推荐)
Mar 27 Python
Python+OpenCV实现在图像上绘制矩形
Mar 21 Python
Python qrcode 生成一个二维码的实例详解
Feb 12 #Python
python标准库sys和OS的函数使用方法与实例详解
Feb 12 #Python
python标准库os库的函数介绍
Feb 12 #Python
Tensorflow 1.0之后模型文件、权重数值的读取方式
Feb 12 #Python
Python django框架开发发布会签到系统(web开发)
Feb 12 #Python
Python计算公交发车时间的完整代码
Feb 12 #Python
详解Django3中直接添加Websockets方式
Feb 12 #Python
You might like
php做下载文件的实现代码及文件名中乱码解决方法
2011/02/03 PHP
把1316这个数表示成两个数的和,其中一个为13的倍数,另一个是11的倍数,求这两个数。
2011/06/24 PHP
php 生成唯一id的几种解决方法
2013/03/08 PHP
Yii2选项卡的简单使用
2017/05/26 PHP
PHP基于自定义函数实现的汉字转拼音功能实例
2017/09/30 PHP
javascript 函数式编程
2007/08/16 Javascript
Cookie 小记
2010/04/01 Javascript
使用JavaScript检测Firefox浏览器是否启用了Firebug的代码
2010/12/28 Javascript
jQuery EasyUI API 中文文档 - Form表单
2011/10/06 Javascript
SeaJS入门教程系列之SeaJS介绍(一)
2014/03/03 Javascript
jQuery实现的个性化返回底部与返回顶部特效代码
2015/10/30 Javascript
JS数字千分位格式化实现方法总结
2016/12/16 Javascript
js仿搜狐视频记录片列表展示效果
2020/05/30 Javascript
ES6新特性三: Generator(生成器)函数详解
2017/04/21 Javascript
jQuery手风琴的简单制作
2017/05/12 jQuery
AngularJS实现表单元素值绑定操作示例
2017/10/11 Javascript
解决vue多个路由共用一个页面的问题
2018/03/12 Javascript
小程序实现搜索框功能
2020/03/26 Javascript
js实现简易计算器功能
2019/10/18 Javascript
使用Promise封装小程序wx.request的实现方法
2019/11/13 Javascript
js实现磁性吸附的示例
2020/10/26 Javascript
Python实现的几个常用排序算法实例
2014/06/16 Python
在Windows服务器下用Apache和mod_wsgi配置Python应用的教程
2015/05/06 Python
Python多维/嵌套字典数据无限遍历的实现
2016/11/04 Python
关于Django外键赋值问题详解
2017/08/13 Python
Python实现列表删除重复元素的三种常用方法分析
2017/11/24 Python
Python 装饰器实现DRY(不重复代码)原则
2018/03/05 Python
python定时检测无响应进程并重启的实例代码
2019/04/22 Python
Django中使用极验Geetest滑动验证码过程解析
2019/07/31 Python
python多线程分块读取文件
2019/08/29 Python
python 中的paramiko模块简介及安装过程
2020/02/29 Python
施工资料员岗位职责
2014/01/06 职场文书
品质标语大全
2014/06/21 职场文书
如何理解Vue前后端数据交互与显示
2021/05/10 Vue.js
python scrapy简单模拟登录的代码分析
2021/07/21 Python
JavaScript文档对象模型DOM
2021/11/20 Javascript