纯python实现机器学习之kNN算法示例


Posted in Python onMarch 01, 2018

前面文章分别简单介绍了线性回归,逻辑回归,贝叶斯分类,并且用python简单实现。这篇文章介绍更简单的 knn, k-近邻算法(kNN,k-NearestNeighbor)。

k-近邻算法(kNN,k-NearestNeighbor),是最简单的机器学习分类算法之一,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似)。

原理

kNN算法的核心思想是用距离最近(多种衡量距离的方式)的k个样本数据来代表目标数据的分类。

具体讲,存在训练样本集, 每个样本都包含数据特征和所属分类值。

输入新的数据,将该数据和训练样本集汇中每一个样本比较,找到距离最近的k个,在k个数据中,出现次数做多的那个分类,即可作为新数据的分类。

纯python实现机器学习之kNN算法示例

如上图:

需要判断绿色是什么形状。当k等于3时,属于三角。当k等于5是,属于方形。

因此该方法具有一下特点:

  1. 监督学习:训练样本集中含有分类信息
  2. 算法简单, 易于理解实现
  3. 结果收到k值的影响,k一般不超过20.
  4. 计算量大,需要计算与样本集中每个样本的距离。
  5. 训练样本集不平衡导致结果不准确问题

接下来用oython 做个简单实现, 并且尝试用于约会网站配对。

python简单实现

def classify(inX, dataSet, labels, k):
  """
  定义knn算法分类器函数
  :param inX: 测试数据
  :param dataSet: 训练数据
  :param labels: 分类类别
  :param k: k值
  :return: 所属分类
  """

  dataSetSize = dataSet.shape[0] #shape(m, n)m列n个特征
  diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
  sqDiffMat = diffMat ** 2
  sqDistances = sqDiffMat.sum(axis=1)
  distances = sqDistances ** 0.5 #欧式距离
  sortedDistIndicies = distances.argsort() #排序并返回index

  classCount = {}
  for i in range(k):
    voteIlabel = labels[sortedDistIndicies[i]]
    classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 #default 0

  sortedClassCount = sorted(classCount.items(), key=lambda d:d[1], reverse=True)
  return sortedClassCount[0][0]

算法的步骤上面有详细的介绍,上面的计算是矩阵运算,下面一个函数是代数运算,做个比较理解。

def classify_two(inX, dataSet, labels, k):
  m, n = dataSet.shape  # shape(m, n)m列n个特征
  # 计算测试数据到每个点的欧式距离
  distances = []
  for i in range(m):
    sum = 0
    for j in range(n):
      sum += (inX[j] - dataSet[i][j]) ** 2
    distances.append(sum ** 0.5)

  sortDist = sorted(distances)

  # k 个最近的值所属的类别
  classCount = {}
  for i in range(k):
    voteLabel = labels[ distances.index(sortDist[i])]
    classCount[voteLabel] = classCount.get(voteLabel, 0) + 1 # 0:map default
  sortedClass = sorted(classCount.items(), key=lambda d:d[1], reverse=True)
  return sortedClass[0][0]

有了上面的分类器,下面进行最简单的实验来预测一下:

def createDataSet():
  group = np.array([[1, 1.1], [1, 1], [0, 0], [0, 0.1]])
  labels = ['A', 'A', 'B', 'B']
  return group, labels

上面是一个简单的训练样本集。

if __name__ == '__main__':
  dataSet, labels = createDataSet()
  r = classify_two([0, 0.2], dataSet, labels, 3)
  print(r)

执行上述函数:可以看到输出B, [0 ,0.2]应该归入b类。

上面就是一个最简单的kNN分类器,下面有个例子。

kNN用于判断婚恋网站中人的受欢迎程度

训练样本集中部分数据如下:

40920 8.326976 0.953952 3
14488 7.153469 1.673904 2
26052 1.441871 0.805124 1
75136 13.147394 0.428964 1
38344 1.669788 0.134296 1

第一列表示每年获得的飞行常客里程数, 第二列表示玩视频游戏所耗时间百分比, 第三类表示每周消费的冰淇淋公升数。第四列表示分类结果,1, 2, 3 分别是 不喜欢,魅力一般,极具魅力。

将数据转换成numpy。

# 文本转换成numpy
def file2matrix(filepath="datingSet.csv"):
  dataSet = np.loadtxt(filepath)
  returnMat = dataSet[:, 0:-1]
  classlabelVector = dataSet[:, -1:]
  return returnMat, classlabelVector

首先对数据有个感知,知道是哪些特征影响分类,进行可视化数据分析。

# 2, 3列数据进行分析
def show_2_3_fig():
  data, cls = file2matrix()
  fig = plt.figure()
  ax = fig.add_subplot(111)
  ax.scatter(data[:, 1], data[: ,2], c=cls)
  plt.xlabel("playing game")
  plt.ylabel("Icm Cream")
  plt.show()

纯python实现机器学习之kNN算法示例

如上图可以看到并无明显的分类。

纯python实现机器学习之kNN算法示例

纯python实现机器学习之kNN算法示例

可以看到不同的人根据特征有明显的区分。因此可以使用kNN算法来进行分类和预测。

由于后面要用到距离比较,因此数据之前的影响较大, 比如飞机里程和冰淇淋数目之间的差距太大。因此需要对数据进行归一化处理。

# 数据归一化
def autoNorm(dataSet):
  minVal = dataSet.min(0)
  maxVal = dataSet.max(0)
  ranges = maxVal - minVal

  normDataSet = np.zeros(dataSet.shape)
  m, n = dataSet.shape # 行, 特征
  normDataSet = dataSet - minVal
  normDataSet = normDataSet / ranges
  return normDataSet, ranges, minVal

衡量算法的准确性

knn算法可以用正确率或者错误率来衡量。错误率为0,表示分类很好。

因此可以将训练样本中的10%用于测试,90%用于训练。

# 定义测试算法的函数
def datingClassTest(h=0.1):
  hoRatio = h
  datingDataMat, datingLabels = file2matrix()
  normMat, ranges, minVals = autoNorm(datingDataMat)
  m, n = normMat.shape
  numTestVecs = int(m * hoRatio) #测试数据行数
  errorCount = 0 # 错误分类数


  # 用前10%的数据做测试
  for i in range(numTestVecs):
    classifierResult = classify(normMat[i, :], normMat[numTestVecs:m, :], datingLabels[numTestVecs:m], 3)
    # print('the classifier came back with: %d,the real answer is: %d' % (int(classifierResult), int(datingLabels[i])))
    if classifierResult != datingLabels[i]:
      errorCount += 1
  print("the total error rate is: %f" % (errorCount / float(numTestVecs)))

调整不同的测试比例,对比结果。

使用knn进行预测。

有了训练样本和分类器,对新数据可以进行预测。模拟数据并进行预测如下:

# 简单进行预测
def classifypersion():
  resultList = ["none", 'not at all','in small doses','in large doses']
  # 模拟数据
  ffmiles = 15360
  playing_game = 8.545204
  ice_name = 1.340429

  datingDataMat, datingLabels = file2matrix()
  normMat, ranges, minVals = autoNorm(datingDataMat)
  inArr = np.array([ffmiles, playing_game, ice_name])
  # 预测数据归一化
  inArr = (inArr - minVals) / ranges
  classifierResult = classify(inArr, normMat, datingLabels, 3)
  print(resultList[int(classifierResult)])

可以看到基本的得到所属的分类。

完成代码和数据请参考:

github:kNN

总结

  1. kNN
  2. 监督学习
  3. 数据可视化
  4. 数据归一化,不影响计算

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python 字典(dict)遍历的四种方法性能测试报告
Jun 25 Python
python实现TCP服务器端与客户端的方法详解
Apr 30 Python
Python抓取框架Scrapy爬虫入门:页面提取
Dec 01 Python
Python Paramiko模块的使用实际案例
Feb 01 Python
Python实现拷贝/删除文件夹的方法详解
Aug 29 Python
django与小程序实现登录验证功能的示例代码
Feb 19 Python
Python 使用PyQt5 完成选择文件或目录的对话框方法
Jun 27 Python
python PIL和CV对 图片的读取,显示,裁剪,保存实现方法
Aug 07 Python
python使用sklearn实现决策树的方法示例
Sep 12 Python
Django认证系统user对象实现过程解析
Mar 02 Python
python爬虫请求头设置代码
Jul 28 Python
Django框架请求生命周期实现原理
Nov 13 Python
用python与文件进行交互的方法
Mar 01 #Python
python爬虫爬取快手视频多线程下载功能
Feb 28 #Python
python爬取m3u8连接的视频
Feb 28 #Python
python实现m3u8格式转换为mp4视频格式
Feb 28 #Python
浅谈Python中的私有变量
Feb 28 #Python
python中logging包的使用总结
Feb 28 #Python
深入理解Python爬虫代理池服务
Feb 28 #Python
You might like
《魔兽争霸3:重制版》翻车了?你想要的我们都没有
2019/11/07 魔兽争霸
php初始化对象和析构函数的简单实例
2014/03/11 PHP
php解析mht文件转换成html的实例
2017/03/13 PHP
[Web]防止用户复制页面内容和另存页面的方法
2009/02/06 Javascript
javascript 写类方式之八
2009/07/05 Javascript
javascript GUID生成器实现代码
2009/10/31 Javascript
通过jQuery打造支持汉字,拼音,英文快速定位查询的超级select插件
2010/06/18 Javascript
js获得鼠标的坐标值的方法
2013/03/13 Javascript
node.js中的fs.symlinkSync方法使用说明
2014/12/15 Javascript
IE10中flexigrid无法显示数据的解决方法
2015/07/26 Javascript
表单验证正则表达式实例代码详解
2015/11/09 Javascript
基于Marquee.js插件实现的跑马灯效果示例
2017/01/25 Javascript
JavaScript提高加载和执行效率的方法
2017/02/03 Javascript
AngulerJS学习之按需动态加载文件
2017/02/13 Javascript
js前端实现图片懒加载(lazyload)的两种方式
2017/04/24 Javascript
jQuery图片查看插件Magnify开发详解
2017/12/25 jQuery
浅谈PDF.js使用心得
2018/06/07 Javascript
小程序页面动态配置实现方法
2019/02/05 Javascript
如何将百度地图包装成Vue的组件的方法步骤
2019/02/12 Javascript
如何实现iframe父子传参通信
2020/02/05 Javascript
Node.js API详解之 vm模块用法实例分析
2020/05/27 Javascript
[03:49]显微镜下的DOTA2第十五期—VG登基之路完美团
2014/06/24 DOTA
[46:44]DOTA2-DPC中国联赛 正赛 Ehome vs PSG.LGD BO3 第二场 3月7日
2021/03/11 DOTA
Python标准库之随机数 (math包、random包)介绍
2014/11/25 Python
Python入门教程之if语句的用法
2015/05/14 Python
简单学习Python多进程Multiprocessing
2017/08/29 Python
简单了解Python中的几种函数
2017/11/03 Python
python自动化报告的输出用例详解
2018/05/30 Python
python 计算平均平方误差(MSE)的实例
2019/06/29 Python
Python何时应该使用Lambda函数
2019/07/02 Python
python输出带颜色字体实例方法
2019/09/01 Python
dpn网络的pytorch实现方式
2020/01/14 Python
django自带的权限管理Permission用法说明
2020/05/13 Python
海外淘书首选:AbeBooks
2017/07/31 全球购物
解释一下ArrayList Vector和LinkedList的实现和区别
2013/04/26 面试题
介绍一下Make? 为什么使用make
2013/12/08 面试题