利用python实现平稳时间序列的建模方式


Posted in Python onJune 03, 2020

一、平稳序列建模步骤

假如某个观察值序列通过序列预处理可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列进行建模。建模的基本步骤如下:

(1)求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值。

(2)根据样本自相关系数和偏自相关系数的性质,选择适当的ARMA(p,q)模型进行拟合。

(3)估计模型中位置参数的值。

(4)检验模型的有效性。如果模型不通过检验,转向步骤(2),重新选择模型再拟合。

(5)模型优化。如果拟合模型通过检验,仍然转向不走(2),充分考虑各种情况,建立多个拟合模型,从所有通过检验的拟合模型中选择最优模型。

(6)利用拟合模型,预测序列的将来走势。

二、代码实现

1、绘制时序图,查看数据的大概分布

trainSeting.head()
Out[36]: 
date
2017-10-01 126.4
2017-10-02  82.4
2017-10-03  78.1
2017-10-04  51.1
2017-10-05  90.9
Name: sales, dtype: float64

plt.plot(trainSeting)

利用python实现平稳时间序列的建模方式

2、平稳性检验

'''进行ADF检验
adf_test的返回值
Test statistic:代表检验统计量
p-value:代表p值检验的概率
Lags used:使用的滞后k,autolag=AIC时会自动选择滞后
Number of Observations Used:样本数量
Critical Value(5%) : 显著性水平为5%的临界值。
(1)假设是存在单位根,即不平稳;
(2)显著性水平,1%:严格拒绝原假设;5%:拒绝原假设,10%类推。
(3)看P值和显著性水平a的大小,p值越小,小于显著性水平的话,就拒绝原假设,认为序列是平稳的;大于的话,不能拒绝,认为是不平稳的
(4)看检验统计量和临界值,检验统计量小于临界值的话,就拒绝原假设,认为序列是平稳的;大于的话,不能拒绝,认为是不平稳的
'''
#滚动统计
def rolling_statistics(timeseries):
 #Determing rolling statistics
 rolmean = pd.rolling_mean(timeseries, window=12)
 rolstd = pd.rolling_std(timeseries, window=12)
 
 #Plot rolling statistics:
 orig = plt.plot(timeseries, color='blue',label='Original')
 mean = plt.plot(rolmean, color='red', label='Rolling Mean')
 std = plt.plot(rolstd, color='black', label = 'Rolling Std')
 plt.legend(loc='best')
 plt.title('Rolling Mean & Standard Deviation')
 plt.show(block=False)
 
##ADF检验
from statsmodels.tsa.stattools import adfuller
def adf_test(timeseries):
 rolling_statistics(timeseries)#绘图
 print ('Results of Augment Dickey-Fuller Test:')
 dftest = adfuller(timeseries, autolag='AIC')
 dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used'])
 for key,value in dftest[4].items():
  dfoutput['Critical Value (%s)'%key] = value #增加后面的显著性水平的临界值
 print (dfoutput)
 
adf_test(trainSeting) #从结果中可以看到p值为0.1097>0.1,不能拒绝H0,认为该序列不是平稳序列

返回结果如下

利用python实现平稳时间序列的建模方式

Results of Augment Dickey-Fuller Test:
Test Statistic    -5.718539e+00
p-value      7.028398e-07
#Lags Used      0.000000e+00
Number of Observations Used 6.200000e+01
Critical Value (1%)   -3.540523e+00
Critical Value (5%)   -2.909427e+00
Critical Value (10%)   -2.592314e+00
dtype: float64

通过上面可以看到,p值小于0.05,可以认为该序列为平稳时间序列。

3、白噪声检验

'''acorr_ljungbox(x, lags=None, boxpierce=False)函数检验无自相关
lags为延迟期数,如果为整数,则是包含在内的延迟期数,如果是一个列表或数组,那么所有时滞都包含在列表中最大的时滞中
boxpierce为True时表示除开返回LB统计量还会返回Box和Pierce的Q统计量
返回值:
lbvalue:测试的统计量
pvalue:基于卡方分布的p统计量
bpvalue:((optionsal), float or array) ? test statistic for Box-Pierce test
bppvalue:((optional), float or array) ? p-value based for Box-Pierce test on chi-square distribution
'''
from statsmodels.stats.diagnostic import acorr_ljungbox
def test_stochastic(ts,lag):
 p_value = acorr_ljungbox(ts, lags=lag) #lags可自定义
 return p_value

test_stochastic(trainSeting,[6,12])
Out[62]: (array([13.28395274, 14.89281684]), array([0.03874194, 0.24735042]))

从上面的分析结果中可以看到,延迟6阶的p值为0.03<0.05,因此可以拒绝原假设,认为该序列不是白噪声序列。

4、确定ARMA的阶数

(1)利用自相关图和偏自相关图

####自相关图ACF和偏相关图PACF
import statsmodels.api as sm
def acf_pacf_plot(ts_log_diff):
 sm.graphics.tsa.plot_acf(ts_log_diff,lags=40) #ARIMA,q
 sm.graphics.tsa.plot_pacf(ts_log_diff,lags=40) #ARIMA,p
 
acf_pacf_plot(trainSeting) #查看数据的自相关图和偏自相关图

利用python实现平稳时间序列的建模方式

(2)借助AIC、BIC统计量自动确定

##借助AIC、BIC统计量自动确定
from statsmodels.tsa.arima_model import ARMA
def proper_model(data_ts, maxLag): 
 init_bic = float("inf")
 init_p = 0
 init_q = 0
 init_properModel = None
 for p in np.arange(maxLag):
  for q in np.arange(maxLag):
   model = ARMA(data_ts, order=(p, q))
   try:
    results_ARMA = model.fit(disp=-1, method='css')
   except:
    continue
   bic = results_ARMA.bic
   if bic < init_bic:
    init_p = p
    init_q = q
    init_properModel = results_ARMA
    init_bic = bic
 return init_bic, init_p, init_q, init_properModel
 
proper_model(trainSeting,40)
#在statsmodels包里还有更直接的函数:
import statsmodels.tsa.stattools as st
order = st.arma_order_select_ic(ts_log_diff2,max_ar=5,max_ma=5,ic=['aic', 'bic', 'hqic'])
order.bic_min_order
'''
我们常用的是AIC准则,AIC鼓励数据拟合的优良性但是尽量避免出现过度拟合(Overfitting)的情况。所以优先考虑的模型应是AIC值最小的那一个模型。
为了控制计算量,我们限制AR最大阶不超过5,MA最大阶不超过5。 但是这样带来的坏处是可能为局部最优。
timeseries是待输入的时间序列,是pandas.Series类型,max_ar、max_ma是p、q值的最大备选值。
order.bic_min_order返回以BIC准则确定的阶数,是一个tuple类型

返回值如下:

order.bic_min_order
Out[13]: (1, 0)

5、建模

从上述结果中可以看到,可以选择AR(1)模型

################################模型######################################
# AR模型,q=0
#RSS是残差平方和
# disp为-1代表不输出收敛过程的信息,True代表输出
from statsmodels.tsa.arima_model import ARIMA
model = ARIMA(trainSeting,order=(1,0,0)) #第二个参数代表使用了二阶差分
results_AR = model.fit(disp=-1)
plt.plot(trainSeting)
plt.plot(results_AR.fittedvalues, color='red') #红色线代表预测值
plt.title('RSS:%.4f' % sum((results_AR.fittedvalues-trainSeting)**2))#残差平方和

利用python实现平稳时间序列的建模方式

6、预测未来走势

############################预测未来走势##########################################
# forecast方法会自动进行差分还原,当然仅限于支持的1阶和2阶差分
forecast_n = 12 #预测未来12个天走势
forecast_AR = results_AR.forecast(forecast_n)
forecast_AR = forecast_AR[0]
print (forecast_AR)

print (forecast_ARIMA_log)
[90.49452199 84.05407353 81.92752342 81.22536496 80.99352161 80.91697003

80.89169372 80.88334782 80.88059211 80.87968222 80.87938178 80.87928258]

##将预测的数据和原来的数据绘制在一起,为了实现这一目的,我们需要增加数据索引,使用开源库arrow:
import arrow
def get_date_range(start, limit, level='day',format='YYYY-MM-DD'):
 start = arrow.get(start, format) 
 result=(list(map(lambda dt: dt.format(format) , arrow.Arrow.range(level, start,limit=limit))))
 dateparse2 = lambda dates:pd.datetime.strptime(dates,'%Y-%m-%d')
 return map(dateparse2, result)
 
# 预测从2017-12-03开始,也就是我们训练数据最后一个数据的后一个日期
new_index = get_date_range('2017-12-03', forecast_n)
forecast_ARIMA_log = pd.Series(forecast_AR, copy=True, index=new_index)
print (forecast_ARIMA_log.head())
##绘图如下
plt.plot(trainSeting,label='Original',color='blue')
plt.plot(forecast_ARIMA_log, label='Forcast',color='red')
plt.legend(loc='best')
plt.title('forecast')

利用python实现平稳时间序列的建模方式

以上这篇利用python实现平稳时间序列的建模方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python生成pdf文件的方法
Aug 04 Python
Python实现分割文件及合并文件的方法
Jul 10 Python
Python中线程的MQ消息队列实现以及消息队列的优点解析
Jun 29 Python
Python pyinotify日志监控系统处理日志的方法
Mar 08 Python
Python文本统计功能之西游记用字统计操作示例
May 07 Python
Flask和Django框架中自定义模型类的表名、父类相关问题分析
Jul 19 Python
python同时替换多个字符串方法示例
Sep 17 Python
python base64库给用户名或密码加密的流程
Jan 02 Python
Spring http服务远程调用实现过程解析
Jun 11 Python
浅谈tensorflow 中的图片读取和裁剪方式
Jun 30 Python
python 获取计算机的网卡信息
Feb 18 Python
Python 数据结构之十大经典排序算法一文通关
Oct 16 Python
Python ADF 单位根检验 如何查看结果的实现
Jun 03 #Python
基于Python快速处理PDF表格数据
Jun 03 #Python
PIL.Image.open和cv2.imread的比较与相互转换的方法
Jun 03 #Python
Python3创建Django项目的几种方法(3种)
Jun 03 #Python
Django 实现 Websocket 广播、点对点发送消息的代码
Jun 03 #Python
使用python实现时间序列白噪声检验方式
Jun 03 #Python
部署Django到阿里云服务器教程示例
Jun 03 #Python
You might like
文件上传的实现
2006/10/09 PHP
PHP 数据结构 算法描述 冒泡排序 bubble sort
2011/07/10 PHP
PHP使用GETDATE获取当前日期时间作为一个关联数组的方法
2015/03/19 PHP
十大使用PHP框架的理由
2015/09/26 PHP
PHP导出Excel实例讲解
2016/01/24 PHP
PHP实现微信公众号验证Token的示例代码
2019/12/16 PHP
PHP大文件及断点续传下载实现代码
2020/08/18 PHP
统一接口:为FireFox添加IE的方法和属性的js代码
2007/03/25 Javascript
JavaScript 开发中规范性的一点感想
2009/06/23 Javascript
javascript学习笔记(二十) 获得和设置元素的特性(属性)
2012/06/20 Javascript
JavaScript对象创建及继承原理实例解剖
2013/02/28 Javascript
js全屏显示显示代码的三种方法
2013/11/11 Javascript
JS实现关键字搜索时的相关下拉字段效果
2014/08/05 Javascript
让JavaScript中setTimeout支持链式操作的方法
2015/06/19 Javascript
关注jquery技巧提高jquery技能(前端开发必学)
2015/11/02 Javascript
探讨JavaScript标签位置的存放与功能有无关系
2016/01/15 Javascript
BootStrap实现手机端轮播图左右滑动事件
2016/10/13 Javascript
jquery实现文本框的禁用和启用
2016/12/07 Javascript
浅谈JavaScript的自动垃圾收集机制
2016/12/15 Javascript
JS实现的验证身份证及获取地区功能示例
2017/01/16 Javascript
angularJS自定义directive之带参方法传递详解
2018/10/09 Javascript
JS实现的tab页切换效果完整示例
2018/12/18 Javascript
Vue中keep-alive的两种应用方式
2020/07/15 Javascript
Python cookbook(字符串与文本)针对任意多的分隔符拆分字符串操作示例
2018/04/19 Python
python3 cvs将数据读取为字典的方法
2018/12/22 Python
Python2.7实现多进程下开发多线程示例
2019/05/31 Python
python实现知乎高颜值图片爬取
2019/08/12 Python
Python如何实现后端自定义认证并实现多条件登陆
2020/06/22 Python
Lacoste澳大利亚官网:服装、鞋类及配饰
2018/11/14 全球购物
家乐福台湾线上购物网:Carrefour台湾
2020/09/15 全球购物
网络教育毕业生自我鉴定
2013/10/10 职场文书
社会实践活动总结
2015/02/05 职场文书
大学生旷课检讨书1000字
2015/02/19 职场文书
2015年中学总务处工作总结
2015/07/22 职场文书
正则表达式基础与常用验证表达式
2022/06/16 Javascript
详解Golang如何实现支持随机删除元素的堆
2022/09/23 Python