pandas.DataFrame的pivot()和unstack()实现行转列


Posted in Python onJuly 06, 2019

示例:有如下表需要进行行转列:

pandas.DataFrame的pivot()和unstack()实现行转列

代码如下:

# -*- coding:utf-8 -*-

import pandas as pd

import MySQLdb

from warnings import filterwarnings

# 由于create table if not exists总会抛出warning,因此使用filterwarnings消除

filterwarnings('ignore', category = MySQLdb.Warning)

from sqlalchemy import create_engine

import sys

if sys.version_info.major<3:

 reload(sys)

 sys.setdefaultencoding("utf-8")

 # 此脚本适用于python2和python3

host,port,user,passwd,db,charset="192.168.1.193",3306,"leo","mysql","test","utf8"

 

def get_df():

 global host,port,user,passwd,db,charset

 conn_config={"host":host, "port":port, "user":user, "passwd":passwd, "db":db,"charset":charset}

 conn = MySQLdb.connect(**conn_config)

 result_df=pd.read_sql('select UserName,Subject,Score from TEST',conn)

 return result_df

 

def pivot(result_df):

 df_pivoted_init=result_df.pivot('UserName','Subject','Score')

 df_pivoted = df_pivoted_init.reset_index() # 将行索引也作为DataFrame值的一部分,以方便存储数据库

 return df_pivoted_init,df_pivoted

 # 返回的两个DataFrame,一个是以姓名作index的,一个是以数字序列作index,前者用于unpivot,后者用于save_to_mysql

 

def unpivot(df_pivoted_init):

 # unpivot需要进行df_pivoted_init二维表格的行、列索引遍历,需要拼SQL因此不能使用save_to_mysql存数据,这里使用SQL和MySQLdb接口存

 insert_sql="insert into test_unpivot(UserName,Subject,Score) values "

 # 处理值为NaN的情况

 df_pivoted_init=df_pivoted_init.fillna(0)

 for col in df_pivoted_init.columns:

  for index in df_pivoted_init.index:

   value=df_pivoted_init.at[index,col]

   if value!=0:

    insert_sql=insert_sql+"('%s','%s',%s)" %(index,col,value)+','

 insert_sql = insert_sql.strip(',')

 global host, port, user, passwd, db, charset

 conn_config = {"host": host, "port": port, "user": user, "passwd": passwd, "db": db, "charset": charset}

 conn = MySQLdb.connect(**conn_config)

 cur=conn.cursor()

 cur.execute("create table if not exists test_unpivot like TEST")

 cur.execute(insert_sql)

 conn.commit()

 conn.close()

 

def save_to_mysql(df_pivoted,tablename):

 global host, port, user, passwd, db, charset

 """

 只有使用sqllite时才能指定con=connection实例,其他数据库需要使用sqlalchemy生成engine,engine的定义可以添加?来设置字符集和其他属性

 """

 conn="mysql://%s:%s@%s:%d/%s?charset=%s" %(user,passwd,host,port,db,charset)

 mysql_engine = create_engine(conn)

 df_pivoted.to_sql(name=tablename, con=mysql_engine, if_exists='replace', index=False)

 

# 从TEST表读取源数据至DataFrame结构

result_df=get_df()

# 将源数据行转列为二维表格形式

df_pivoted_init,df_pivoted=pivot(result_df)

# 将二维表格形式的数据存到新表test中

save_to_mysql(df_pivoted,'test')

# 将被行转列的数据unpivot,存入test_unpivot表中

unpivot(df_pivoted_init)

结果如下:

pandas.DataFrame的pivot()和unstack()实现行转列

关于Pandas DataFrame类自带的pivot方法:

DataFrame.pivot(index=None, columns=None, values=None):

Return reshaped DataFrame organized by given index / column values.

这里只有3个参数,是因为pivot之后的结果一定是二维表格,只需要行列及其对应的值,而且也因为是二维表格,unpivot之后is_pass列是肯定会丢失的,因此一开始我就没查这个列。

补充说明:

在学习到Pandas的层次化索引部分时发现了2个很有意思的函数,也可以进行行列互转,其用法如下:(很久之后我才意识到,pivot只是封装了unstack的一个快捷方式而已,其本质上还是先用set_index建立层次化索引,然后用unstack进行重塑,就像我在下面示例做的操作)

# -*- coding:utf-8 -*-

import pandas as pd

import MySQLdb

from warnings import filterwarnings

# 由于create table if not exists总会抛出warning,因此使用filterwarnings消除

filterwarnings('ignore', category = MySQLdb.Warning)

from sqlalchemy import create_engine

import sys

if sys.version_info.major<3:

 reload(sys)

 sys.setdefaultencoding("utf-8")

 # 此脚本适用于python2和python3

host,port,user,passwd,db,charset="192.168.1.193",3306,"leo","mysql","test","utf8"

 

def get_df():

 global host,port,user,passwd,db,charset

 conn_config={"host":host, "port":port, "user":user, "passwd":passwd, "db":db,"charset":charset}

 conn = MySQLdb.connect(**conn_config)

 result_df=pd.read_sql('select UserName,Subject,Score from TEST',conn)

 return result_df

 

def pivot(result_df):

 df_pivoted_init=result_df.pivot('UserName','Subject','Score')

 df_pivoted = df_pivoted_init.reset_index() # 将行索引也作为DataFrame值的一部分,以方便存储数据库

 return df_pivoted_init,df_pivoted

 # 返回的两个DataFrame,一个是以姓名作index的,一个是以数字序列作index,前者用于unpivot,后者用于save_to_mysql

 

def unpivot(df_pivoted_init):

 # unpivot需要进行df_pivoted_init二维表格的行、列索引遍历,需要拼SQL因此不能使用save_to_mysql存数据,这里使用SQL和MySQLdb接口存

 insert_sql="insert into test_unpivot(UserName,Subject,Score) values "

 # 处理值为NaN的情况

 df_pivoted_init=df_pivoted_init.fillna(0)

 for col in df_pivoted_init.columns:

  for index in df_pivoted_init.index:

   value=df_pivoted_init.at[index,col]

   if value!=0:

    insert_sql=insert_sql+"('%s','%s',%s)" %(index,col,value)+','

 insert_sql = insert_sql.strip(',')

 global host, port, user, passwd, db, charset

 conn_config = {"host": host, "port": port, "user": user, "passwd": passwd, "db": db, "charset": charset}

 conn = MySQLdb.connect(**conn_config)

 cur=conn.cursor()

 cur.execute("create table if not exists test_unpivot like TEST")

 cur.execute(insert_sql)

 conn.commit()

 conn.close()

 

def save_to_mysql(df_pivoted,tablename):

 global host, port, user, passwd, db, charset

 """

 只有使用sqllite时才能指定con=connection实例,其他数据库需要使用sqlalchemy生成engine,engine的定义可以添加?来设置字符集和其他属性

 """

 conn="mysql://%s:%s@%s:%d/%s?charset=%s" %(user,passwd,host,port,db,charset)

 mysql_engine = create_engine(conn)

 df_pivoted.to_sql(name=tablename, con=mysql_engine, if_exists='replace', index=False)

 

# 从TEST表读取源数据至DataFrame结构

result_df=get_df()

# 将源数据行转列为二维表格形式

df_pivoted_init,df_pivoted=pivot(result_df)

# 将二维表格形式的数据存到新表test中

save_to_mysql(df_pivoted,'test')

# 将被行转列的数据unpivot,存入test_unpivot表中

unpivot(df_pivoted_init)

以上利用了Pandas的层次化索引,实际上这也是层次化索引一个主要的用途,结合本例我们可以把代码改成如下:

result_df=pd.read_sql('select UserName,Subject,Score from TEST',conn)

# 在从数据库中获取的数据格式是这样的:

    UserName Subject Score

0    张三   语文  80.0

1    张三   数学  90.0

2    张三   英语  70.0

3    张三   生物  85.0

4    李四   语文  80.0

5    李四   数学  92.0

6    李四   英语  76.0

7    王五   语文  60.0

8    王五   数学  82.0

9    王五   英语  96.0

10    王五   生物  78.0

# 如果要使用层次化索引,那么我们只需要把UserName和Subject列设置为层次化索引,Score为其对应的值即可,我们借用set_index()函数:

df=result_df.set_index(['UserName','Subject'])

In [112]: df.unstack()

Out[112]: 

     Score         

Subject   数学  生物  英语  语文

UserName            

张三    90.0 85.0 70.0 80.0

李四    92.0  NaN 76.0 80.0

王五    82.0 78.0 96.0 60.0

# 使用stack可以将unstack的结果转回来,这样就也在形式上实现了行列互转,之后的操作基本一致了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python模拟登录百度贴吧(百度贴吧登录)实例
Dec 18 Python
Python Web框架Flask信号机制(signals)介绍
Jan 01 Python
python读取和保存视频文件
Apr 16 Python
浅谈tensorflow1.0 池化层(pooling)和全连接层(dense)
Apr 27 Python
对python使用http、https代理的实例讲解
May 07 Python
局域网内python socket实现windows与linux间的消息传送
Apr 19 Python
Django继承自带user表并重写的例子
Nov 18 Python
python连接打印机实现打印文档、图片、pdf文件等功能
Feb 07 Python
opencv-python的RGB与BGR互转方式
Jun 02 Python
python 爬虫基本使用——统计杭电oj题目正确率并排序
Oct 26 Python
Python排序算法之插入排序及其优化方案详解
Jun 11 Python
python基础之类方法和静态方法
Oct 24 Python
从列表或字典创建Pandas的DataFrame对象的方法
Jul 06 #Python
pandas的qcut()方法详解
Jul 06 #Python
pandas 层次化索引的实现方法
Jul 06 #Python
pandas删除行删除列增加行增加列的实现
Jul 06 #Python
Python使用Pandas库实现MySQL数据库的读写
Jul 06 #Python
python 实现的发送邮件模板【普通邮件、带附件、带图片邮件】
Jul 06 #Python
Python 微信爬虫完整实例【单线程与多线程】
Jul 06 #Python
You might like
用PHP实现小型站点广告管理
2006/10/09 PHP
使用PHP获取网络文件的实现代码
2010/01/01 PHP
php文本转图片自动换行的方法
2013/03/13 PHP
分享下页面关键字抓取components.arrow.com站点代码
2014/01/30 PHP
php将csv文件导入到mysql数据库的方法
2014/12/24 PHP
你应该知道PHP浮点数知识
2015/05/13 PHP
php简单实现发送带附件的邮件
2015/06/10 PHP
[原创]php token使用与验证示例【测试可用】
2017/08/30 PHP
jQuery 前的按键判断代码
2010/03/19 Javascript
基于JQuery.timer插件实现一个计时器
2010/04/25 Javascript
jQuery之网页换肤实现代码
2011/04/30 Javascript
javascript SpiderMonkey中的函数序列化如何进行
2012/12/05 Javascript
jQuery中:password选择器用法实例
2015/01/03 Javascript
Javascript动态创建div的方法
2015/02/09 Javascript
jQuery弹出遮罩层效果完整示例
2016/09/13 Javascript
Windows系统下安装Node.js的步骤图文详解
2016/11/15 Javascript
详解JavaScript模块化开发
2016/12/04 Javascript
vue-cli3.0使用及部分配置详解
2018/08/29 Javascript
对angularJs中controller控制器scope父子集作用域的实例讲解
2018/10/08 Javascript
Vue项目引发的「过滤器」使用教程
2019/03/12 Javascript
vue中的v-model原理,与组件自定义v-model详解
2020/08/04 Javascript
[05:08]顺网杯ISS-DOTA2赛歌 少女偶像Lunar青春演绎
2013/12/05 DOTA
win7安装python生成随机数代码分享
2013/12/27 Python
django解决跨域请求的问题
2018/11/11 Python
实例详解Matlab 与 Python 的区别
2019/04/26 Python
css3 利用transform打造走动的2D时钟
2020/10/20 HTML / CSS
Bally澳大利亚官网:瑞士奢侈品牌
2018/11/01 全球购物
香港草莓网:Strawberrynet香港
2019/05/10 全球购物
什么是Web Service?
2012/07/25 面试题
手术室护士自我鉴定
2013/10/14 职场文书
工作失误检讨书(3篇)
2014/10/11 职场文书
2015年挂职干部工作总结
2015/05/14 职场文书
2016年“七一建党节”广播稿
2015/12/18 职场文书
基于flask实现五子棋小游戏
2021/05/25 Python
教你怎么用python selenium实现自动化测试
2021/05/27 Python
Python如何加载模型并查看网络
2022/07/15 Python