python 识别登录验证码图片功能的实现代码(完整代码)


Posted in Python onJuly 03, 2020

在编写自动化测试用例的时候,每次登录都需要输入验证码,后来想把让python自己识别图片里的验证码,不需要自己手动登陆,所以查了一下识别功能怎么实现,做一下笔记。

首选导入一些用到的库,re、Image、pytesseract、selenium、time

import re # 用于正则
from PIL import Image # 用于打开图片和对图片处理
import pytesseract # 用于图片转文字
from selenium import webdriver # 用于打开网站
import time # 代码运行停顿

首先需要获取验证码图片,才能进一步识别。

创建类,定义webdriver和find_element_by_selector方法,用来打开网页和定位验证码图片的元素

class VerificationCode:
  def __init__(self):
    self.driver = webdriver.Firefox()
    self.find_element = self.driver.find_element_by_css_selector

然后打开浏览器截取验证码图片

def get_pictures(self):
    self.driver.get('http://123.255.123.3') # 打开登陆页面
    self.driver.save_screenshot('pictures.png') # 全屏截图
    page_snap_obj = Image.open('pictures.png')
    img = self.find_element('#pic') # 验证码元素位置
    time.sleep(1)
    location = img.location
    size = img.size # 获取验证码的大小参数
    left = location['x']
    top = location['y']
    right = left + size['width']
    bottom = top + size['height']
    image_obj = page_snap_obj.crop((left, top, right, bottom)) # 按照验证码的长宽,切割验证码
    image_obj.show() # 打开切割后的完整验证码
    self.driver.close() # 处理完验证码后关闭浏览器
    return image_obj

未处理前的验证码图片如下:

python 识别登录验证码图片功能的实现代码(完整代码)

未处理的验证码图片,对于python来说识别率较低,仔细看可以发现图片里有很对五颜六色扰乱识别的点,非常影响识别率。

下面对获取的验证码进行处理。

首先用convert把图片转成黑白色。设置threshold阈值,超过阈值的为黑色

def processing_image(self):
    image_obj = self.get_pictures() # 获取验证码
    img = image_obj.convert("L") # 转灰度
    pixdata = img.load()
    w, h = img.size
    threshold = 160 # 该阈值不适合所有验证码,具体阈值请根据验证码情况设置
    # 遍历所有像素,大于阈值的为黑色
    for y in range(h):
      for x in range(w):
        if pixdata[x, y] < threshold:
          pixdata[x, y] = 0
        else:
          pixdata[x, y] = 255
    return img

经过灰度处理后的图片

python 识别登录验证码图片功能的实现代码(完整代码)

然后删除一些扰乱识别的像素点。

def delete_spot(self):
    images = self.processing_image()
    data = images.getdata()
    w, h = images.size
    black_point = 0
    for x in range(1, w - 1):
      for y in range(1, h - 1):
        mid_pixel = data[w * y + x] # 中央像素点像素值
        if mid_pixel < 50: # 找出上下左右四个方向像素点像素值
          top_pixel = data[w * (y - 1) + x]
          left_pixel = data[w * y + (x - 1)]
          down_pixel = data[w * (y + 1) + x]
          right_pixel = data[w * y + (x + 1)]
          # 判断上下左右的黑色像素点总个数
          if top_pixel < 10:
            black_point += 1
          if left_pixel < 10:
            black_point += 1
          if down_pixel < 10:
            black_point += 1
          if right_pixel < 10:
            black_point += 1
          if black_point < 1:
            images.putpixel((x, y), 255)
          black_point = 0
    # images.show()
    return images

经过去除噪点处理后的图片

python 识别登录验证码图片功能的实现代码(完整代码)

最后把处理后的图片转成文字。

先设置pytesseract的路径,因为默认路径是错的,然后转换图片为文字,由于个别图片中识别会出现处理遗漏,会被识别成空格或则点或则分号什么的,所以增加了一个去除验证码中特殊字符的处理。

PS:tesseract文件下载链接

def image_str(self):
    image = self.delete_spot()
    pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe" # 设置pyteseract路径
    result = pytesseract.image_to_string(image) # 图片转文字
    resultj = re.sub(u"([^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a])", "", result) # 去除识别出来的特殊字符
    result_four = resultj[0:4] # 只获取前4个字符
    # print(resultj) # 打印识别的验证码
    return result_four

完整代码如下:

import re # 用于正则
from PIL import Image # 用于打开图片和对图片处理
import pytesseract # 用于图片转文字
from selenium import webdriver # 用于打开网站
import time # 代码运行停顿
 
 
class VerificationCode:
  def __init__(self):
    self.driver = webdriver.Firefox()
    self.find_element = self.driver.find_element_by_css_selector
 
  def get_pictures(self):
    self.driver.get('http://123.255.123.3') # 打开登陆页面
    self.driver.save_screenshot('pictures.png') # 全屏截图
    page_snap_obj = Image.open('pictures.png')
    img = self.find_element('#pic') # 验证码元素位置
    time.sleep(1)
    location = img.location
    size = img.size # 获取验证码的大小参数
    left = location['x']
    top = location['y']
    right = left + size['width']
    bottom = top + size['height']
    image_obj = page_snap_obj.crop((left, top, right, bottom)) # 按照验证码的长宽,切割验证码
    image_obj.show() # 打开切割后的完整验证码
    self.driver.close() # 处理完验证码后关闭浏览器
    return image_obj
 
  def processing_image(self):
    image_obj = self.get_pictures() # 获取验证码
    img = image_obj.convert("L") # 转灰度
    pixdata = img.load()
    w, h = img.size
    threshold = 160
    # 遍历所有像素,大于阈值的为黑色
    for y in range(h):
      for x in range(w):
        if pixdata[x, y] < threshold:
          pixdata[x, y] = 0
        else:
          pixdata[x, y] = 255
    return img
 
  def delete_spot(self):
    images = self.processing_image()
    data = images.getdata()
    w, h = images.size
    black_point = 0
    for x in range(1, w - 1):
      for y in range(1, h - 1):
        mid_pixel = data[w * y + x] # 中央像素点像素值
        if mid_pixel < 50: # 找出上下左右四个方向像素点像素值
          top_pixel = data[w * (y - 1) + x]
          left_pixel = data[w * y + (x - 1)]
          down_pixel = data[w * (y + 1) + x]
          right_pixel = data[w * y + (x + 1)]
          # 判断上下左右的黑色像素点总个数
          if top_pixel < 10:
            black_point += 1
          if left_pixel < 10:
            black_point += 1
          if down_pixel < 10:
            black_point += 1
          if right_pixel < 10:
            black_point += 1
          if black_point < 1:
            images.putpixel((x, y), 255)
          black_point = 0
    # images.show()
    return images
 
  def image_str(self):
    image = self.delete_spot()
    pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe" # 设置pyteseract路径
    result = pytesseract.image_to_string(image) # 图片转文字
    resultj = re.sub(u"([^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a])", "", result) # 去除识别出来的特殊字符
    result_four = resultj[0:4] # 只获取前4个字符
    # print(resultj) # 打印识别的验证码
    return result_four
 
if __name__ == '__main__':
  a = VerificationCode()
  a.image_str()

看评论有很多人需要tesseract.exe文件,但是由于文件过大,发邮件会出现无法下载的情况,有需要的可以在一下连接里下载tesseract.exe文件

到此这篇关于python 识别登录验证码图片(完整代码)的文章就介绍到这了,更多相关python识别登录验证码图片内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python递归函数定义与用法示例
Jun 02 Python
对Tensorflow中的矩阵运算函数详解
Jul 27 Python
python3.6数独问题的解决
Jan 21 Python
Django框架模板的使用方法示例
May 25 Python
24式加速你的Python(小结)
Jun 13 Python
python中从for循环延申到推导式的具体使用
Nov 29 Python
Python ORM框架Peewee用法详解
Apr 29 Python
Jupyter notebook如何修改平台字体
May 13 Python
python 读取.nii格式图像实例
Jul 01 Python
windows+vscode安装paddleOCR运行环境的步骤
Nov 11 Python
python单例模式的应用场景实例讲解
Feb 24 Python
用Python仅20行代码编写一个简单的端口扫描器
Apr 08 Python
python图片验证码识别最新模块muggle_ocr的示例代码
Jul 03 #Python
keras topN显示,自编写代码案例
Jul 03 #Python
python如何使用代码运行助手
Jul 03 #Python
Python 3.10 的首个 PEP 诞生,内置类型 zip() 迎来新特性(推荐)
Jul 03 #Python
python3 简单实现组合设计模式
Jul 02 #Python
Django Session和Cookie分别实现记住用户登录状态操作
Jul 02 #Python
django 装饰器 检测登录状态操作
Jul 02 #Python
You might like
php中计算程序运行时间的类代码
2012/11/03 PHP
php创建基本身份认证站点的方法详解
2013/06/08 PHP
php解析base64数据生成图片的方法
2016/12/06 PHP
单击按钮显示隐藏子菜单经典案例
2013/01/04 Javascript
nodejs之请求路由概述
2014/07/05 NodeJs
javascript中为某个元素指定事件的三种方式
2014/08/07 Javascript
JavaScript组合拼接字符串的效率对比测试
2014/11/06 Javascript
iframe跨域通信封装详解
2015/08/11 Javascript
JS实现鼠标框选效果完整实例
2016/06/20 Javascript
Javascript highcharts 饼图显示数量和百分比实例代码
2016/12/06 Javascript
javascript中闭包概念与用法深入理解
2016/12/15 Javascript
vue中将网页打印成pdf实例代码
2017/06/15 Javascript
详解探索 vuex 2.0 以及使用 vuejs 2.0 + vuex 2.0 构建记事本应用
2017/06/16 Javascript
vue-cli3.0 特性解读
2018/04/22 Javascript
Vue中关闭弹窗组件时销毁并隐藏操作
2020/09/01 Javascript
[04:03]DOTA2英雄梦之声_第02期_风暴之灵
2014/06/30 DOTA
使用Python抓取模板之家的CSS模板
2015/03/16 Python
python基于socket实现网络广播的方法
2015/04/29 Python
介绍Python的Urllib库的一些高级用法
2015/04/30 Python
pygame游戏之旅 添加键盘按键的方法
2018/11/20 Python
python tkinter图形界面代码统计工具
2019/09/18 Python
css3+jq创作含苞待放的荷花
2014/02/20 HTML / CSS
 Alo Yoga官网:购买瑜伽服装
2018/06/17 全球购物
Deichmann英国:德国鞋类零售商
2021/01/30 全球购物
利达恒信公司.NET笔试题面试题
2016/03/05 面试题
护士进修自我鉴定
2014/02/07 职场文书
党员干部形式主义个人整改措施
2014/09/17 职场文书
离婚协议书范本(通用篇)
2014/11/30 职场文书
2014年后勤管理工作总结
2014/12/01 职场文书
2014年电教工作总结
2014/12/19 职场文书
春季运动会开幕词
2015/01/28 职场文书
投资公司董事长岗位职责
2015/04/16 职场文书
单方投资意向书
2015/05/11 职场文书
老生常谈 使用 CSS 实现三角形的技巧(多种方法)
2021/04/13 HTML / CSS
科学家研发出新型速效酶,可在 24 小时内降解塑料制品
2022/04/29 数码科技
SQL使用复合索引实现数据库查询的优化
2022/05/25 SQL Server