python实现人脸识别经典算法(一) 特征脸法


Posted in Python onMarch 13, 2018

近来想要做一做人脸识别相关的内容,主要是想集成一个系统,看到opencv已经集成了三种性能较好的算法,但是还是想自己动手试一下,毕竟算法都比较初级。

操作环境:python2.7

第三方库:opencv for python、numpy

第一种比较经典的算法就是特征脸法,本质上其实就是PCA降维,这种算法的基本思路是,把二维的图像先灰度化,转化为一通道的图像,之后再把它首尾相接转化为一个列向量,假设图像大小是20*20的,那么这个向量就是400维,理论上讲组织成一个向量,就可以应用任何机器学习算法了,但是维度太高算法复杂度也会随之升高,所以需要使用PCA算法降维,然后使用简单排序或者KNN都可以。

只当搬运工,送上链接。

PCA ,这篇博客讲得非常好了,从原理到实现基本看这个就能搞出来了:PCA的数学原理

特征脸法:PCA应用在人脸识别当中:人脸识别经典算法一:特征脸方法(Eigenface) ,这里与PCA有不同的操作就是特征值分解的时候,由于图像组成的列向量维度太高,直接按照PCA算法求解会很慢,所以这里有一种特殊的处理方法。

数据组织形式为若干样本图片分类放入对应文件夹中,然后在统一存放入face文件夹下,测试图像单独一张图像即可。

另外,由于PCA中维度是一个很麻烦的事情,所以在程序中,我打印了很多维度信息,有助于我们理解PCA的工作过程和调试。

代码如下:

#encoding=utf-8 
import numpy as np 
import cv2 
import os 
 
class EigenFace(object): 
 def __init__(self,threshold,dimNum,dsize): 
 self.threshold = threshold # 阈值暂未使用 
 self.dimNum = dimNum 
 self.dsize = dsize 
 
 def loadImg(self,fileName,dsize): 
 ''''' 
 载入图像,灰度化处理,统一尺寸,直方图均衡化 
 :param fileName: 图像文件名 
 :param dsize: 统一尺寸大小。元组形式 
 :return: 图像矩阵 
 ''' 
 img = cv2.imread(fileName) 
 retImg = cv2.resize(img,dsize) 
 retImg = cv2.cvtColor(retImg,cv2.COLOR_RGB2GRAY) 
 retImg = cv2.equalizeHist(retImg) 
 # cv2.imshow('img',retImg) 
 # cv2.waitKey() 
 return retImg 
 
 
 def createImgMat(self,dirName): 
 ''''' 
 生成图像样本矩阵,组织形式为行为属性,列为样本 
 :param dirName: 包含训练数据集的图像文件夹路径 
 :return: 样本矩阵,标签矩阵 
 ''' 
 dataMat = np.zeros((10,1)) 
 label = [] 
 for parent,dirnames,filenames in os.walk(dirName): 
  # print parent 
  # print dirnames 
  # print filenames 
  index = 0 
  for dirname in dirnames: 
  for subParent,subDirName,subFilenames in os.walk(parent+'/'+dirname): 
   for filename in subFilenames: 
   img = self.loadImg(subParent+'/'+filename,self.dsize) 
   tempImg = np.reshape(img,(-1,1)) 
   if index == 0 : 
    dataMat = tempImg 
   else: 
    dataMat = np.column_stack((dataMat,tempImg)) 
   label.append(subParent+'/'+filename) 
   index += 1 
 return dataMat,label 
 
 
 def PCA(self,dataMat,dimNum): 
 ''''' 
 PCA函数,用于数据降维 
 :param dataMat: 样本矩阵 
 :param dimNum: 降维后的目标维度 
 :return: 降维后的样本矩阵和变换矩阵 
 ''' 
 # 均值化矩阵 
 meanMat = np.mat(np.mean(dataMat,1)).T 
 print '平均值矩阵维度',meanMat.shape 
 diffMat = dataMat-meanMat 
 # 求协方差矩阵,由于样本维度远远大于样本数目,所以不直接求协方差矩阵,采用下面的方法 
 covMat = (diffMat.T*diffMat)/float(diffMat.shape[1]) # 归一化 
 #covMat2 = np.cov(dataMat,bias=True) 
 #print '基本方法计算协方差矩阵为',covMat2 
 print '协方差矩阵维度',covMat.shape 
 eigVals, eigVects = np.linalg.eig(np.mat(covMat)) 
 print '特征向量维度',eigVects.shape 
 print '特征值',eigVals 
 eigVects = diffMat*eigVects 
 eigValInd = np.argsort(eigVals) 
 eigValInd = eigValInd[::-1] 
 eigValInd = eigValInd[:dimNum] # 取出指定个数的前n大的特征值 
 print '选取的特征值',eigValInd 
 eigVects = eigVects/np.linalg.norm(eigVects,axis=0) #归一化特征向量 
 redEigVects = eigVects[:,eigValInd] 
 print '选取的特征向量',redEigVects.shape 
 print '均值矩阵维度',diffMat.shape 
 lowMat = redEigVects.T*diffMat 
 print '低维矩阵维度',lowMat.shape 
 return lowMat,redEigVects 
 
 def compare(self,dataMat,testImg,label): 
 ''''' 
 比较函数,这里只是用了最简单的欧氏距离比较,还可以使用KNN等方法,如需修改修改此处即可 
 :param dataMat: 样本矩阵 
 :param testImg: 测试图像矩阵,最原始形式 
 :param label: 标签矩阵 
 :return: 与测试图片最相近的图像文件名 
 ''' 
 testImg = cv2.resize(testImg,self.dsize) 
 testImg = cv2.cvtColor(testImg,cv2.COLOR_RGB2GRAY) 
 testImg = np.reshape(testImg,(-1,1)) 
 lowMat,redVects = self.PCA(dataMat,self.dimNum) 
 testImg = redVects.T*testImg 
 print '检测样本变换后的维度',testImg.shape 
 disList = [] 
 testVec = np.reshape(testImg,(1,-1)) 
 for sample in lowMat.T: 
  disList.append(np.linalg.norm(testVec-sample)) 
 print disList 
 sortIndex = np.argsort(disList) 
 return label[sortIndex[0]] 
 
 
 def predict(self,dirName,testFileName): 
 ''''' 
 预测函数 
 :param dirName: 包含训练数据集的文件夹路径 
 :param testFileName: 测试图像文件名 
 :return: 预测结果 
 ''' 
 testImg = cv2.imread(testFileName) 
 dataMat,label = self.createImgMat(dirName) 
 print '加载图片标签',label 
 ans = self.compare(dataMat,testImg,label) 
 return ans 
 
 
if __name__ == '__main__': 
 eigenface = EigenFace(20,50,(50,50)) 
 print eigenface.predict('d:/face','D:/face_test/1.bmp')

 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现远程调用MetaSploit的方法
Aug 22 Python
Python的Tornado框架的异步任务与AsyncHTTPClient
Jun 27 Python
python WindowsError的错误代码详解
Jul 23 Python
Python3中的bytes和str类型详解
May 02 Python
eclipse创建python项目步骤详解
May 10 Python
python地震数据可视化详解
Jun 18 Python
Python的垃圾回收机制详解
Aug 28 Python
django中上传图片分页三级联动效果的实现代码
Aug 30 Python
python判断是空的实例分享
Jul 06 Python
Python大批量搜索引擎图像爬虫工具详解
Nov 16 Python
python 实现波浪滤镜特效
Dec 02 Python
python opencv实现图像配准与比较
Feb 09 Python
tensorflow实现softma识别MNIST
Mar 12 #Python
wxpython实现图书管理系统
Mar 12 #Python
人生苦短我用python python如何快速入门?
Mar 12 #Python
tensorflow实现KNN识别MNIST
Mar 12 #Python
Python操作MySQL模拟银行转账
Mar 12 #Python
python3 图片referer防盗链的实现方法
Mar 12 #Python
tensorflow构建BP神经网络的方法
Mar 12 #Python
You might like
header()函数使用说明
2006/11/23 PHP
PHP针对多用户实现更换头像功能
2016/09/04 PHP
js 兼容多浏览器的回车和鼠标焦点事件代码(IE6/7/8,firefox,chrome)
2010/04/14 Javascript
javascript dom代码应用 简单的相册[firefox only]
2010/06/12 Javascript
读jQuery之七 判断点击了鼠标哪个键的代码
2011/06/21 Javascript
Javascript面向对象编程
2012/03/18 Javascript
javascript动态生成树形菜单的方法
2015/11/14 Javascript
Node.js的Express框架使用上手指南
2016/03/12 Javascript
js仿百度切换皮肤功能(html+css)
2016/07/10 Javascript
jQuery简单实现遍历单选框的方法
2017/03/06 Javascript
.net MVC+Bootstrap下使用localResizeIMG上传图片
2017/04/21 Javascript
ES6 系列之 Generator 的自动执行的方法示例
2018/10/19 Javascript
vuex实现及简略解析(小结)
2019/03/01 Javascript
使用Vue-Awesome-Swiper实现旋转叠加轮播效果&平移轮播效果
2019/08/16 Javascript
vue路由分文件拆分管理详解
2020/08/13 Javascript
Vue+Element UI 树形控件整合下拉功能菜单(tree + dropdown +input)
2020/08/28 Javascript
零基础写python爬虫之爬虫编写全记录
2014/11/06 Python
详解Python中DOM方法的动态性
2015/04/11 Python
Python实现带百分比的进度条
2016/06/28 Python
浅谈pandas中DataFrame关于显示值省略的解决方法
2018/04/08 Python
Python爬虫基础之XPath语法与lxml库的用法详解
2018/09/13 Python
linux中如何使用python3获取ip地址
2019/07/15 Python
解决python脚本中error: unrecognized arguments: True错误
2020/04/20 Python
python logging.info在终端没输出的解决
2020/05/12 Python
django model 条件过滤 queryset.filter(**condtions)用法详解
2020/05/20 Python
pandas数据处理之绘图的实现
2020/06/15 Python
Spring @Enable模块驱动原理及使用实例
2020/06/23 Python
使用html5制作loading图的示例
2014/04/14 HTML / CSS
澳大利亚手表品牌:Time IV Change
2018/10/06 全球购物
如何将字串String转换成整数int
2015/02/21 面试题
《黄道婆》教学反思
2016/02/22 职场文书
如何书写民事调解协议书?
2019/06/25 职场文书
新手开公司创业注意事项有哪些?
2019/07/29 职场文书
解决thinkphp6(tp6)在状态码500下不报错,或者显示错误“Malformed UTF-8 characters”的问题
2021/04/01 PHP
MySQL中datetime时间字段的四舍五入操作
2021/10/05 MySQL