浅谈pandas中DataFrame关于显示值省略的解决方法


Posted in Python onApril 08, 2018

python的pandas库是一个非常好的工具,里面的DataFrame更是常用且好用,最近是越用越觉得设计的漂亮,pandas的很多细节设计的都非常好,有待使用过程中发掘。

好了,发完感慨,说一下最近DataFrame遇到的一个细节:

在使用DataFrame中有时候会遇到表格中的value显示不完全,像下面这样:

In:
import pandas as pd
longString = u'''真正的科学家应当是个幻想家;谁不是幻想家,谁就只能把自己称为实践家。人生的磨难是很多的,
所以我们不可对于每一件轻微的伤害都过于敏感。在生活磨难面前,精神上的坚强和无动于衷是我们抵抗罪恶和人生意外的最好武器。'''
pd.DataFrame({'word':[longString]})

输出如下:

浅谈pandas中DataFrame关于显示值省略的解决方法

可以看到,显示值长度为50个后就出现了省略了,这个因为DataFrame默认的显示长度为50,不过可以改默认设置:

pd.set_option('max_colwidth',200)
pd.DataFrame({'word':[longString]})

浅谈pandas中DataFrame关于显示值省略的解决方法

通过设置就可以改变显示长度了。

关于set_option所有的参数介绍如下:

Available options:
- display.[chop_threshold, colheader_justify, column_space, date_dayfirst,
 date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr]
- display.latex.[escape, longtable, repr]
- display.[line_width, max_categories, max_columns, max_colwidth,
 max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage,
 mpl_style, multi_sparse, notebook_repr_html, pprint_nest_depth, precision,
 show_dimensions]
- display.unicode.[ambiguous_as_wide, east_asian_width]
- display.[width]
- io.excel.xls.[writer]
- io.excel.xlsm.[writer]
- io.excel.xlsx.[writer]
- io.hdf.[default_format, dropna_table]
- mode.[chained_assignment, sim_interactive, use_inf_as_null]
Parameters
----------
pat : str
 Regexp which should match a single option.
 Note: partial matches are supported for convenience, but unless you use the
 full option name (e.g. x.y.z.option_name), your code may break in future
 versions if new options with similar names are introduced.
value :
 new value of option.
Returns
-------
None
Raises
------
OptionError if no such option exists
Notes
-----
The available options with its descriptions:
display.chop_threshold : float or None
 if set to a float value, all float values smaller then the given threshold
 will be displayed as exactly 0 by repr and friends.
 [default: None] [currently: None]
display.colheader_justify : 'left'/'right'
 Controls the justification of column headers. used by DataFrameFormatter.
 [default: right] [currently: right]
display.column_space No description available.
 [default: 12] [currently: 12]
display.date_dayfirst : boolean
 When True, prints and parses dates with the day first, eg 20/01/2005
 [default: False] [currently: False]
display.date_yearfirst : boolean
 When True, prints and parses dates with the year first, eg 2005/01/20
 [default: False] [currently: False]
display.encoding : str/unicode
 Defaults to the detected encoding of the console.
 Specifies the encoding to be used for strings returned by to_string,
 these are generally strings meant to be displayed on the console.
 [default: UTF-8] [currently: UTF-8]
display.expand_frame_repr : boolean
 Whether to print out the full DataFrame repr for wide DataFrames across
 multiple lines, `max_columns` is still respected, but the output will
 wrap-around across multiple "pages" if its width exceeds `display.width`.
 [default: True] [currently: True]
display.float_format : callable
 The callable should accept a floating point number and return
 a string with the desired format of the number. This is used
 in some places like SeriesFormatter.
 See formats.format.EngFormatter for an example.
 [default: None] [currently: None]
display.height : int
 Deprecated.
 [default: 60] [currently: 60]
 (Deprecated, use `display.max_rows` instead.)
display.large_repr : 'truncate'/'info'
 For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can
 show a truncated table (the default from 0.13), or switch to the view from
 df.info() (the behaviour in earlier versions of pandas).
 [default: truncate] [currently: truncate]
display.latex.escape : bool
 This specifies if the to_latex method of a Dataframe uses escapes special
 characters.
 method. Valid values: False,True
 [default: True] [currently: True]
display.latex.longtable :bool
 This specifies if the to_latex method of a Dataframe uses the longtable
 format.
 method. Valid values: False,True
 [default: False] [currently: False]
display.latex.repr : boolean
 Whether to produce a latex DataFrame representation for jupyter
 environments that support it.
 (default: False)
 [default: False] [currently: False]
display.line_width : int
 Deprecated.
 [default: 80] [currently: 80]
 (Deprecated, use `display.width` instead.)
display.max_categories : int
 This sets the maximum number of categories pandas should output when
 printing out a `Categorical` or a Series of dtype "category".
 [default: 8] [currently: 8]
display.max_columns : int
 If max_cols is exceeded, switch to truncate view. Depending on
 `large_repr`, objects are either centrally truncated or printed as
 a summary view. 'None' value means unlimited.
 In case python/IPython is running in a terminal and `large_repr`
 equals 'truncate' this can be set to 0 and pandas will auto-detect
 the width of the terminal and print a truncated object which fits
 the screen width. The IPython notebook, IPython qtconsole, or IDLE
 do not run in a terminal and hence it is not possible to do
 correct auto-detection.
 [default: 20] [currently: 20]
display.max_colwidth : int
 The maximum width in characters of a column in the repr of
 a pandas data structure. When the column overflows, a "..."
 placeholder is embedded in the output.
 [default: 50] [currently: 200]
display.max_info_columns : int
 max_info_columns is used in DataFrame.info method to decide if
 per column information will be printed.
 [default: 100] [currently: 100]
display.max_info_rows : int or None
 df.info() will usually show null-counts for each column.
 For large frames this can be quite slow. max_info_rows and max_info_cols
 limit this null check only to frames with smaller dimensions than
 specified.
 [default: 1690785] [currently: 1690785]
display.max_rows : int
 If max_rows is exceeded, switch to truncate view. Depending on
 `large_repr`, objects are either centrally truncated or printed as
 a summary view. 'None' value means unlimited.
 In case python/IPython is running in a terminal and `large_repr`
 equals 'truncate' this can be set to 0 and pandas will auto-detect
 the height of the terminal and print a truncated object which fits
 the screen height. The IPython notebook, IPython qtconsole, or
 IDLE do not run in a terminal and hence it is not possible to do
 correct auto-detection.
 [default: 60] [currently: 60]
display.max_seq_items : int or None
 when pretty-printing a long sequence, no more then `max_seq_items`
 will be printed. If items are omitted, they will be denoted by the
 addition of "..." to the resulting string.
 If set to None, the number of items to be printed is unlimited.
 [default: 100] [currently: 100]
display.memory_usage : bool, string or None
 This specifies if the memory usage of a DataFrame should be displayed when
 df.info() is called. Valid values True,False,'deep'
 [default: True] [currently: True]
display.mpl_style : bool
 Setting this to 'default' will modify the rcParams used by matplotlib
 to give plots a more pleasing visual style by default.
 Setting this to None/False restores the values to their initial value.
 [default: None] [currently: None]
display.multi_sparse : boolean
 "sparsify" MultiIndex display (don't display repeated
 elements in outer levels within groups)
 [default: True] [currently: True]
display.notebook_repr_html : boolean
 When True, IPython notebook will use html representation for
 pandas objects (if it is available).
 [default: True] [currently: True]
display.pprint_nest_depth : int
 Controls the number of nested levels to process when pretty-printing
 [default: 3] [currently: 3]
display.precision : int
 Floating point output precision (number of significant digits). This is
 only a suggestion
 [default: 6] [currently: 6]
display.show_dimensions : boolean or 'truncate'
 Whether to print out dimensions at the end of DataFrame repr.
 If 'truncate' is specified, only print out the dimensions if the
 frame is truncated (e.g. not display all rows and/or columns)
 [default: truncate] [currently: truncate]
display.unicode.ambiguous_as_wide : boolean
 Whether to use the Unicode East Asian Width to calculate the display text
 width.
 Enabling this may affect to the performance (default: False)
 [default: False] [currently: False]
display.unicode.east_asian_width : boolean
 Whether to use the Unicode East Asian Width to calculate the display text
 width.
 Enabling this may affect to the performance (default: False)
 [default: False] [currently: False]
display.width : int
 Width of the display in characters. In case python/IPython is running in
 a terminal this can be set to None and pandas will correctly auto-detect
 the width.
 Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a
 terminal and hence it is not possible to correctly detect the width.
 [default: 80] [currently: 80]
io.excel.xls.writer : string
 The default Excel writer engine for 'xls' files. Available options:
 'xlwt' (the default).
 [default: xlwt] [currently: xlwt]
io.excel.xlsm.writer : string
 The default Excel writer engine for 'xlsm' files. Available options:
 'openpyxl' (the default).
 [default: openpyxl] [currently: openpyxl]
io.excel.xlsx.writer : string
 The default Excel writer engine for 'xlsx' files. Available options:
 'xlsxwriter' (the default), 'openpyxl'.
 [default: xlsxwriter] [currently: xlsxwriter]
io.hdf.default_format : format
 default format writing format, if None, then
 put will default to 'fixed' and append will default to 'table'
 [default: None] [currently: None]
io.hdf.dropna_table : boolean
 drop ALL nan rows when appending to a table
 [default: False] [currently: False]
mode.chained_assignment : string
 Raise an exception, warn, or no action if trying to use chained assignment,
 The default is warn
 [default: warn] [currently: warn]
mode.sim_interactive : boolean
 Whether to simulate interactive mode for purposes of testing
 [default: False] [currently: False]
mode.use_inf_as_null : boolean
 True means treat None, NaN, INF, -INF as null (old way),
 False means None and NaN are null, but INF, -INF are not null
 (new way).
 [default: False] [currently: False]

以上这篇浅谈pandas中DataFrame关于显示值省略的解决方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中利用sqrt()方法进行平方根计算的教程
May 15 Python
Python 字典与字符串的互转实例
Jan 13 Python
Python编程实现双链表,栈,队列及二叉树的方法示例
Nov 01 Python
Python编程django实现同一个ip十分钟内只能注册一次
Nov 03 Python
Python实现字典(dict)的迭代操作示例
Jun 05 Python
python爬取足球直播吧五大联赛积分榜
Jun 13 Python
python多进程使用及线程池的使用方法代码详解
Oct 24 Python
详解pandas如何去掉、过滤数据集中的某些值或者某些行?
May 15 Python
关于Numpy中的行向量和列向量详解
Nov 30 Python
详解Python中的分支和循环结构
Feb 11 Python
Tensorflow 模型转换 .pb convert to .lite实例
Feb 12 Python
Python集成开发工具Pycharm的安装和使用详解
Mar 18 Python
python3获取两个日期之间所有日期,以及比较大小的实例
Apr 08 #Python
python pandas中DataFrame类型数据操作函数的方法
Apr 08 #Python
python随机取list中的元素方法
Apr 08 #Python
Python实现的端口扫描功能示例
Apr 08 #Python
Python简单实现的代理服务器端口映射功能示例
Apr 08 #Python
pandas修改DataFrame列名的方法
Apr 08 #Python
Python数据分析库pandas基本操作方法
Apr 08 #Python
You might like
PHP的基本常识小结
2013/07/05 PHP
jquery关于页面焦点的定位(文本框获取焦点时改变样式 )
2010/09/10 Javascript
基于jquery自己写tab滑动门(通用版)
2012/10/30 Javascript
Javascript连接多个数组不用concat来解决
2014/03/24 Javascript
javascript实现2048游戏示例
2014/05/04 Javascript
JS 排序输出实现table行号自增前端动态生成的tr
2014/08/13 Javascript
jQuery实现根据类型自动显示和隐藏表单
2015/03/18 Javascript
JavaScript实现输入框(密码框)出现提示语
2016/01/12 Javascript
jQuery 3.0十大新特性
2016/07/06 Javascript
微信小程序 LOL 英雄介绍开发实例
2016/09/30 Javascript
Javascript中字符串和数字的操作方法整理
2017/01/22 Javascript
jquery 判断是否支持Placeholder属性的方法
2017/02/07 Javascript
JavaScript函数节流的两种写法
2017/04/07 Javascript
JavaScript实现无刷新上传预览图片功能
2017/08/02 Javascript
node.js使用redis储存session的方法
2018/09/26 Javascript
详解CommonJS和ES6模块循环加载处理的区别
2018/12/26 Javascript
vue实现页面滚动到底部刷新
2019/08/16 Javascript
webpack3升级到webpack4遇到问题总结
2019/09/30 Javascript
Node登录权限验证token验证实现的方法示例
2020/05/25 Javascript
Python自定义函数的创建、调用和函数的参数详解
2014/03/11 Python
Python脚本判断 Linux 是否运行在虚拟机上
2015/04/25 Python
理解生产者消费者模型及在Python编程中的运用实例
2016/06/26 Python
pandas取出重复数据的方法
2019/07/04 Python
wxPython实现列表增删改查功能
2019/11/19 Python
Python3打包exe代码2种方法实例解析
2020/02/17 Python
Python yield的用法实例分析
2020/03/06 Python
Python爬虫JSON及JSONPath运行原理详解
2020/06/04 Python
CSS3实现网站商品展示效果图
2020/01/18 HTML / CSS
德国Discount-Apotheke中文官网:DC德式康线上药房
2020/02/18 全球购物
优秀乡村医生先进事迹材料
2014/08/23 职场文书
破坏寝室公物检讨书
2014/11/17 职场文书
优秀少先队辅导员事迹材料
2014/12/24 职场文书
python glom模块的使用简介
2021/04/13 Python
python 字典和列表嵌套用法详解
2021/06/29 Python
Nginx使用Lua模块实现WAF的原理解析
2021/09/04 Servers
NoSQL优缺点与MongoDB数据库简介
2022/06/05 MongoDB