pytorch随机采样操作SubsetRandomSampler()


Posted in Python onJuly 07, 2020

这篇文章记录一个采样器都随机地从原始的数据集中抽样数据。抽样数据采用permutation。 生成任意一个下标重排,从而利用下标来提取dataset中的数据的方法

需要的库

import torch

使用方法

这里以MNIST举例

train_dataset = dsets.MNIST(root='./data', #文件存放路径
              train=True,  #提取训练集
              transform=transforms.ToTensor(), #将图像转化为Tensor
              download=True)

sample_size = len(train_dataset)
sampler1 = torch.utils.data.sampler.SubsetRandomSampler(
  np.random.choice(range(len(train_dataset)), sample_size))

代码详解

np.random.choice()

#numpy.random.choice(a, size=None, replace=True, p=None)
#从a(只要是ndarray都可以,但必须是一维的)中随机抽取数字,并组成指定大小(size)的数组
#replace:True表示可以取相同数字,False表示不可以取相同数字
#数组p:与数组a相对应,表示取数组a中每个元素的概率,默认为选取每个元素的概率相同。

那么这里就相当于抽取了一个全排列

torch.utils.data.sampler.SubsetRandomSampler

# 会根据后面给的列表从数据集中按照下标取元素
# class torch.utils.data.SubsetRandomSampler(indices):无放回地按照给定的索引列表采样样本元素。

所以就可以了。

补充知识:Pytorch学习之torch----随机抽样、序列化、并行化

1. torch.manual_seed(seed)

说明:设置生成随机数的种子,返回一个torch._C.Generator对象。使用随机数种子之后,生成的随机数是相同的。

参数:

seed(int or long) -- 种子

>>> import torch
>>> torch.manual_seed(1)
<torch._C.Generator object at 0x0000019684586350>
>>> a = torch.rand(2, 3)
>>> a
tensor([[0.7576, 0.2793, 0.4031],
    [0.7347, 0.0293, 0.7999]])
>>> torch.manual_seed(1)
<torch._C.Generator object at 0x0000019684586350>
>>> b = torch.rand(2, 3)
>>> b
tensor([[0.7576, 0.2793, 0.4031],
    [0.7347, 0.0293, 0.7999]])
>>> a == b
tensor([[1, 1, 1],
    [1, 1, 1]], dtype=torch.uint8)

2. torch.initial_seed()

说明:返回生成随机数的原始种子值

>>> torch.manual_seed(4)
<torch._C.Generator object at 0x0000019684586350>
>>> torch.initial_seed()
4

3. torch.get_rng_state()

说明:返回随机生成器状态(ByteTensor)

>>> torch.initial_seed()
4
>>> torch.get_rng_state()
tensor([4, 0, 0, ..., 0, 0, 0], dtype=torch.uint8)

4. torch.set_rng_state()

说明:设定随机生成器状态

参数:

new_state(ByteTensor) -- 期望的状态

5. torch.default_generator

说明:默认的随机生成器。等于<torch._C.Generator object>

6. torch.bernoulli(input, out=None)

说明:从伯努利分布中抽取二元随机数(0或1)。输入张量包含用于抽取二元值的概率。因此,输入中的所有值都必须在[0,1]区间内。输出张量的第i个元素值,将会以输入张量的第i个概率值等于1。返回值将会是与输入相同大小的张量,每个值为0或者1.

参数:

input(Tensor) -- 输入为伯努利分布的概率值

out(Tensor,可选) -- 输出张量

>>> a = torch.Tensor(3, 3).uniform_(0, 1)
>>> a
tensor([[0.5596, 0.5591, 0.0915],
    [0.2100, 0.0072, 0.0390],
    [0.9929, 0.9131, 0.6186]])
>>> torch.bernoulli(a)
tensor([[0., 1., 0.],
    [0., 0., 0.],
    [1., 1., 1.]])

7. torch.multinomial(input, num_samples, replacement=False, out=None)

说明:返回一个张量,每行包含从input相应行中定义的多项分布中抽取的num_samples个样本。要求输入input每行的值不需要总和为1,但是必须非负且总和不能为0。当抽取样本时,依次从左到右排列(第一个样本对应第一列)。如果输入input是一个向量,输出out也是一个相同长度num_samples的向量。如果输入input是m行的矩阵,输出out是形如m x n的矩阵。并且如果参数replacement为True,则样本抽取可以重复。否则,一个样本在每行不能被重复。

参数:

input(Tensor) -- 包含概率的张量

num_samples(int) -- 抽取的样本数

replacement(bool) -- 布尔值,决定是否能重复抽取

out(Tensor) -- 结果张量

>>> weights = torch.Tensor([0, 10, 3, 0])
>>> weights
tensor([ 0., 10., 3., 0.])
>>> torch.multinomial(weights, 4, replacement=True)
tensor([1, 1, 1, 1])

8. torch.normal(means, std, out=None)

说明:返回一个张量,包含从给定参数means,std的离散正态分布中抽取随机数。均值means是一个张量,包含每个输出元素相关的正态分布的均值。std是一个张量。包含每个输出元素相关的正态分布的标准差。均值和标准差的形状不须匹配,但每个张量的元素个数必须想听。

参数:

means(Tensor) -- 均值

std(Tensor) -- 标准差

out(Tensor) -- 输出张量

>>> n_data = torch.ones(5, 2)
>>> n_data
tensor([[1., 1.],
    [1., 1.],
    [1., 1.],
    [1., 1.],
    [1., 1.]])
>>> x0 = torch.normal(2 * n_data, 1)
>>> x0
tensor([[1.6544, 0.9805],
    [2.1114, 2.7113],
    [1.0646, 1.9675],
    [2.7652, 3.2138],
    [1.1204, 2.0293]])

9. torch.save(obj, f, pickle_module=<module 'pickle' from '/home/lzjs/...)

说明:保存一个对象到一个硬盘文件上。

参数:

obj -- 保存对象

f -- 类文件对象或一个保存文件名的字符串

pickle_module -- 用于pickling源数据和对象的模块

pickle_protocol -- 指定pickle protocal可以覆盖默认参数

10. torch.load(f, map_location=None, pickle_module=<module 'pickle' from '/home/lzjs/...)

说明:从磁盘文件中读取一个通过torch.save()保存的对象。torch.load()可通过参数map_location动态地进行内存重映射,使其能从不动设备中读取文件。一般调用时,需两个参数:storage和location tag。返回不同地址中的storage,或者返回None。如果这个参数是字典的话,意味着从文件的地址标记到当前系统的地址标记的映射。

参数:

f -- l类文件对象或一个保存文件名的字符串

map_location -- 一个函数或字典规定如何remap存储位置

pickle_module -- 用于unpickling元数据和对象的模块

torch.load('tensors.pt')
# 加载所有的张量到CPU
torch.load('tensor.pt', map_location=lambda storage, loc:storage)
# 加载张量到GPU
torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'})

11. torch.get_num_threads()

说明:获得用于并行化CPU操作的OpenMP线程数

12. torch.set_num_threads()

说明:设定用于并行化CPU操作的OpenMP线程数

以上这篇pytorch随机采样操作SubsetRandomSampler()就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python模块学习 filecmp 文件比较
Aug 27 Python
python获取外网ip地址的方法总结
Jul 02 Python
Python利用Beautiful Soup模块创建对象详解
Mar 27 Python
Python中shutil模块的学习笔记教程
Apr 04 Python
pandas带有重复索引操作方法
Jun 08 Python
CentOS下Python3的安装及创建虚拟环境的方法
Nov 28 Python
VSCode Python开发环境配置的详细步骤
Feb 22 Python
django认证系统 Authentication使用详解
Jul 22 Python
python实现XML解析的方法解析
Nov 16 Python
Python 求向量的余弦值操作
Mar 04 Python
使用Python拟合函数曲线
Apr 14 Python
使用Python获取字典键对应值的方法
Apr 26 Python
pytorch加载自己的图像数据集实例
Jul 07 #Python
keras实现VGG16 CIFAR10数据集方式
Jul 07 #Python
使用darknet框架的imagenet数据分类预训练操作
Jul 07 #Python
Python调用C语言程序方法解析
Jul 07 #Python
keras实现VGG16方式(预测一张图片)
Jul 07 #Python
通过实例解析Python RPC实现原理及方法
Jul 07 #Python
Keras预训练的ImageNet模型实现分类操作
Jul 07 #Python
You might like
图片存储与浏览一例(Linux+Apache+PHP+MySQL)
2006/10/09 PHP
php header()函数使用说明
2008/07/10 PHP
注册页面之前先验证用户名是否存在的php代码
2012/07/14 PHP
处理(php-cgi.exe - FastCGI 进程超过了配置的请求超时时限)的问题
2013/07/03 PHP
配置php网页显示各种语法错误
2013/09/23 PHP
PHP获取指定函数定义在哪个文件中以及其所在的行号实例
2014/05/08 PHP
解决yii2左侧菜单子级无法高亮问题的方法
2016/05/08 PHP
UserData用法总结 lanyu出品
2010/07/01 Javascript
JavaScript浏览器选项卡效果
2010/08/25 Javascript
DWR实现模拟Google搜索效果实现原理及代码
2013/01/30 Javascript
js点击button按钮跳转到另一个新页面
2014/10/10 Javascript
Bootstrap每天必学之日期控制
2016/03/07 Javascript
javascript基本语法
2016/05/31 Javascript
了解VUE的render函数的使用
2017/06/08 Javascript
微信小程序基于本地缓存实现点赞功能的方法
2017/12/18 Javascript
微信小程序使用form表单获取输入框数据的实例代码
2018/05/17 Javascript
利用jqgrid实现上移下移单元格功能
2018/11/07 Javascript
layui数据表格重载实现往后台传参
2019/11/15 Javascript
JavaScript中this的学习笔记及用法整理
2020/02/17 Javascript
JavaScript实现拖拽效果
2020/03/16 Javascript
微信小程序实现菜单左右联动
2020/05/19 Javascript
python爬虫入门教程--正则表达式完全指南(五)
2017/05/25 Python
Python开发SQLite3数据库相关操作详解【连接,查询,插入,更新,删除,关闭等】
2017/07/27 Python
python实现百万答题自动百度搜索答案
2018/01/16 Python
Python subprocess模块详细解读
2018/01/29 Python
pytorch 输出中间层特征的实例
2019/08/17 Python
在jupyter notebook 添加 conda 环境的操作详解
2020/04/10 Python
纯CSS3实现的阴影效果
2014/12/24 HTML / CSS
物业管理应届生求职信
2013/10/28 职场文书
数控个人求职信范文
2014/02/03 职场文书
农村文化活动总结
2014/08/28 职场文书
幼儿园感谢信
2015/01/21 职场文书
离婚起诉书范文2015
2015/05/19 职场文书
2016年党建工作简报
2015/11/26 职场文书
《自己去吧》教学反思
2016/02/16 职场文书
SQL SERVER触发器详解
2022/02/24 SQL Server