keras实现VGG16 CIFAR10数据集方式


Posted in Python onJuly 07, 2020

我就废话不多说了,大家还是直接看代码吧!

import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from keras import optimizers
import numpy as np
from keras.layers.core import Lambda
from keras import backend as K
from keras.optimizers import SGD
from keras import regularizers
 
#import data
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
 
weight_decay = 0.0005
nb_epoch=100
batch_size=32
 
#layer1 32*32*3
model = Sequential()
model.add(Conv2D(64, (3, 3), padding='same',
input_shape=(32,32,3),kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.3))
#layer2 32*32*64
model.add(Conv2D(64, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#layer3 16*16*64
model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer4 16*16*128
model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#layer5 8*8*128
model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer6 8*8*256
model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer7 8*8*256
model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#layer8 4*4*256
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer9 4*4*512
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer10 4*4*512
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#layer11 2*2*512
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer12 2*2*512
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer13 2*2*512
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
#layer14 1*1*512
model.add(Flatten())
model.add(Dense(512,kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
#layer15 512
model.add(Dense(512,kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
#layer16 512
model.add(Dropout(0.5))
model.add(Dense(10))
model.add(Activation('softmax'))
# 10
 
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=['accuracy'])
 
model.fit(x_train,y_train,epochs=nb_epoch, batch_size=batch_size,
       validation_split=0.1, verbose=1)

补充知识:pytorch一步一步在VGG16上训练自己的数据集

准备数据集及加载,ImageFolder

在很多机器学习或者深度学习的任务中,往往我们要提供自己的图片。也就是说我们的数据集不是预先处理好的,像mnist,cifar10等它已经给你处理好了,更多的是原始的图片。比如我们以猫狗分类为例。在data文件下,有两个分别为train和val的文件夹。然后train下是cat和dog两个文件夹,里面存的是自己的图片数据,val文件夹同train。这样我们的数据集就准备好了。

keras实现VGG16 CIFAR10数据集方式

ImageFolder能够以目录名作为标签来对数据集做划分,下面是pytorch中文文档中关于ImageFolder的介绍:

keras实现VGG16 CIFAR10数据集方式

#对训练集做一个变换
train_transforms = transforms.Compose([
  transforms.RandomResizedCrop(224), #对图片尺寸做一个缩放切割
  transforms.RandomHorizontalFlip(), #水平翻转
  transforms.ToTensor(),   #转化为张量
  transforms.Normalize((.5, .5, .5), (.5, .5, .5)) #进行归一化
])
#对测试集做变换
val_transforms = transforms.Compose([
  transforms.Resize(256),
  transforms.RandomResizedCrop(224),
  transforms.ToTensor(),
  transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])

train_dir = "G:/data/train"      #训练集路径
#定义数据集
train_datasets = datasets.ImageFolder(train_dir, transform=train_transforms)
#加载数据集
train_dataloader = torch.utils.data.DataLoader(train_datasets, batch_size=batch_size, shuffle=True)

val_dir = "G:/datat/val" 
val_datasets = datasets.ImageFolder(val_dir, transform=val_transforms)
val_dataloader = torch.utils.data.DataLoader(val_datasets, batch_size=batch_size, shuffle=True)

迁移学习以VGG16为例

下面是迁移代码的实现:

class VGGNet(nn.Module):
  def __init__(self, num_classes=2):  #num_classes,此处为 二分类值为2
    super(VGGNet, self).__init__()
    net = models.vgg16(pretrained=True)  #从预训练模型加载VGG16网络参数
    net.classifier = nn.Sequential() #将分类层置空,下面将改变我们的分类层
    self.features = net #保留VGG16的特征层
    self.classifier = nn.Sequential(  #定义自己的分类层
        nn.Linear(512 * 7 * 7, 512), #512 * 7 * 7不能改变 ,由VGG16网络决定的,第二个参数为神经元个数可以微调
        nn.ReLU(True),
        nn.Dropout(),
        nn.Linear(512, 128),
        nn.ReLU(True),
        nn.Dropout(),
        nn.Linear(128, num_classes),
    )

  def forward(self, x):
    x = self.features(x)
    x = x.view(x.size(0), -1)
    x = self.classifier(x)
    return x

完整代码如下

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import numpy as np
from torchvision import models

batch_size = 16
learning_rate = 0.0002
epoch = 10

train_transforms = transforms.Compose([
  transforms.RandomResizedCrop(224),
  transforms.RandomHorizontalFlip(),
  transforms.ToTensor(),
  transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])
val_transforms = transforms.Compose([
  transforms.Resize(256),
  transforms.RandomResizedCrop(224),
  transforms.ToTensor(),
  transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])

train_dir = './VGGDataSet/train'
train_datasets = datasets.ImageFolder(train_dir, transform=train_transforms)
train_dataloader = torch.utils.data.DataLoader(train_datasets, batch_size=batch_size, shuffle=True)

val_dir = './VGGDataSet/val'
val_datasets = datasets.ImageFolder(val_dir, transform=val_transforms)
val_dataloader = torch.utils.data.DataLoader(val_datasets, batch_size=batch_size, shuffle=True)

class VGGNet(nn.Module):
  def __init__(self, num_classes=3):
    super(VGGNet, self).__init__()
    net = models.vgg16(pretrained=True)
    net.classifier = nn.Sequential()
    self.features = net
    self.classifier = nn.Sequential(
        nn.Linear(512 * 7 * 7, 512),
        nn.ReLU(True),
        nn.Dropout(),
        nn.Linear(512, 128),
        nn.ReLU(True),
        nn.Dropout(),
        nn.Linear(128, num_classes),
    )

  def forward(self, x):
    x = self.features(x)
    x = x.view(x.size(0), -1)
    x = self.classifier(x)
    return x

#--------------------训练过程---------------------------------
model = VGGNet()
if torch.cuda.is_available():
  model.cuda()
params = [{'params': md.parameters()} for md in model.children()
     if md in [model.classifier]]
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
loss_func = nn.CrossEntropyLoss()

Loss_list = []
Accuracy_list = []

for epoch in range(100):
  print('epoch {}'.format(epoch + 1))
  # training-----------------------------
  train_loss = 0.
  train_acc = 0.
  for batch_x, batch_y in train_dataloader:
    batch_x, batch_y = Variable(batch_x).cuda(), Variable(batch_y).cuda()
    out = model(batch_x)
    loss = loss_func(out, batch_y)
    train_loss += loss.data[0]
    pred = torch.max(out, 1)[1]
    train_correct = (pred == batch_y).sum()
    train_acc += train_correct.data[0]
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
  print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
    train_datasets)), train_acc / (len(train_datasets))))

  # evaluation--------------------------------
  model.eval()
  eval_loss = 0.
  eval_acc = 0.
  for batch_x, batch_y in val_dataloader:
    batch_x, batch_y = Variable(batch_x, volatile=True).cuda(), Variable(batch_y, volatile=True).cuda()
    out = model(batch_x)
    loss = loss_func(out, batch_y)
    eval_loss += loss.data[0]
    pred = torch.max(out, 1)[1]
    num_correct = (pred == batch_y).sum()
    eval_acc += num_correct.data[0]
  print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
    val_datasets)), eval_acc / (len(val_datasets))))
    
	Loss_list.append(eval_loss / (len(val_datasets)))
  Accuracy_list.append(100 * eval_acc / (len(val_datasets)))

x1 = range(0, 100)
x2 = range(0, 100)
y1 = Accuracy_list
y2 = Loss_list
plt.subplot(2, 1, 1)
plt.plot(x1, y1, 'o-')
plt.title('Test accuracy vs. epoches')
plt.ylabel('Test accuracy')
plt.subplot(2, 1, 2)
plt.plot(x2, y2, '.-')
plt.xlabel('Test loss vs. epoches')
plt.ylabel('Test loss')
plt.show()
# plt.savefig("accuracy_loss.jpg")

以上这篇keras实现VGG16 CIFAR10数据集方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
用python实现的去除win下文本文件头部BOM的代码
Feb 10 Python
python 切片和range()用法说明
Mar 24 Python
python操作摄像头截图实现远程监控的例子
Mar 25 Python
python中的全局变量用法分析
Jun 09 Python
Django框架中数据的连锁查询和限制返回数据的方法
Jul 17 Python
python定时按日期备份MySQL数据并压缩
Apr 19 Python
Django Rest framework解析器和渲染器详解
Jul 25 Python
解决Djang2.0.1中的reverse导入失败的问题
Aug 16 Python
用python实现英文字母和相应序数转换的方法
Sep 18 Python
python中的函数递归和迭代原理解析
Nov 14 Python
Python爬虫JSON及JSONPath运行原理详解
Jun 04 Python
pytest配置文件pytest.ini的详细使用
Apr 17 Python
使用darknet框架的imagenet数据分类预训练操作
Jul 07 #Python
Python调用C语言程序方法解析
Jul 07 #Python
keras实现VGG16方式(预测一张图片)
Jul 07 #Python
通过实例解析Python RPC实现原理及方法
Jul 07 #Python
Keras预训练的ImageNet模型实现分类操作
Jul 07 #Python
Scrapy模拟登录赶集网的实现代码
Jul 07 #Python
scrapy框架携带cookie访问淘宝购物车功能的实现代码
Jul 07 #Python
You might like
日本十大惊悚动漫
2020/03/04 日漫
php中用date函数获取当前时间有误的解决办法
2013/08/02 PHP
PHP5.5安装PHPRedis扩展及连接测试方法
2017/01/22 PHP
php写app用的框架整理
2019/09/29 PHP
Yii框架的redis命令使用方法简单示例
2019/10/15 PHP
PHP使用openssl扩展实现加解密方法示例
2020/02/20 PHP
PHP rsa加密解密算法原理解析
2020/12/09 PHP
用js 让图片在 div或dl里 居中,底部对齐
2008/01/21 Javascript
select标记美化--JS式插件、后期加载
2013/04/01 Javascript
网页运行时提示对象不支持abigimage属性或方法
2014/08/10 Javascript
异步安全加载javascript文件的方法
2015/07/21 Javascript
简单谈谈node.js 版本控制 nvm和 n
2015/10/15 Javascript
如何使用PHP+jQuery+MySQL实现异步加载ECharts地图数据(附源码下载)
2016/02/23 Javascript
javascript高级选择器querySelector和querySelectorAll全面解析
2016/04/07 Javascript
Vue.js双向绑定操作技巧(初级入门)
2016/12/27 Javascript
nodejs实现连接mongodb数据库的方法示例
2018/03/15 NodeJs
Express的HTTP重定向到HTTPS的方法
2018/06/06 Javascript
老生常谈JavaScript获取CSS样式的方法(兼容各浏览器)
2018/09/19 Javascript
JS函数节流和防抖之间的区分和实现详解
2019/01/11 Javascript
使用Phantomjs和Node完成网页的截屏快照的方法
2019/07/16 Javascript
Nautil 中使用双向数据绑定的实现
2019/10/02 Javascript
[03:00]《DAC最前线》之欧美新秀VS老将
2015/02/01 DOTA
Python使用迭代器打印螺旋矩阵的思路及代码示例
2016/07/02 Python
python魔法方法-属性访问控制详解
2016/07/25 Python
Python中关于Sequence切片的下标问题详解
2017/06/15 Python
使用 Visual Studio Code(VSCode)搭建简单的Python+Django开发环境的方法步骤
2018/12/17 Python
python爬取基于m3u8协议的ts文件并合并
2019/04/26 Python
解析python的局部变量和全局变量
2019/08/15 Python
韩国三星旗下的一家超市连锁店:Home Plus
2016/07/30 全球购物
Zooplus罗马尼亚:宠物食品和配件
2019/11/02 全球购物
比较基础的php面试题及答案-编程题
2012/10/14 面试题
师范应届毕业生自荐信
2013/11/18 职场文书
最经典的大学生职业生涯规划范文
2014/03/05 职场文书
优秀少先队员事迹材料
2014/12/24 职场文书
升职自我推荐信范文
2015/03/25 职场文书
Python Matplotlib绘制动画的代码详解
2022/05/30 Python