基于PyTorch实现一个简单的CNN图像分类器


Posted in Python onMay 29, 2021

pytorch中文网:https://www.pytorchtutorial.com/
pytorch官方文档:https://pytorch.org/docs/stable/index.html

一. 加载数据

Pytorch的数据加载一般是用torch.utils.data.Dataset与torch.utils.data.Dataloader两个类联合进行。我们需要继承Dataset来定义自己的数据集类,然后在训练时用Dataloader加载自定义的数据集类。

1. 继承Dataset类并重写关键方法

pytorch的dataset类有两种:Map-style datasets和Iterable-style datasets。前者是我们常用的结构,而后者是当数据集难以(或不可能)进行随机读取时使用。在这里我们实现Map-style dataset。
继承torch.utils.data.Dataset后,需要重写的方法有:__len__与__getitem__方法,其中__len__方法需要返回所有数据的数量,而__getitem__则是要依照给出的数据索引获取对应的tensor类型的Sample,除了这两个方法以外,一般还需要实现__init__方法来初始化一些变量。话不多说,直接上代码。

'''
包括了各种数据集的读取处理,以及图像相关处理方法
'''
from torch.utils.data import Dataset
import torch
import os
import cv2
from Config import mycfg
import random
import numpy as np


class ImageClassifyDataset(Dataset):
    def __init__(self, imagedir, labelfile, classify_num, train=True):
    	'''
    	这里进行一些初始化操作。
    	'''
        self.imagedir = imagedir
        self.labelfile = labelfile
        self.classify_num = classify_num
        self.img_list = []
        # 读取标签
        with open(self.labelfile, 'r') as fp:
            lines = fp.readlines()
            for line in lines:
                filepath = os.path.join(self.imagedir, line.split(";")[0].replace('\\', '/'))
                label = line.split(";")[1].strip('\n')
                self.img_list.append((filepath, label))
        if not train:
            self.img_list = random.sample(self.img_list, 50)

    def __len__(self):
        return len(self.img_list)
        
    def __getitem__(self, item):
	    '''
	    这个函数是关键,通过item(索引)来取数据集中的数据,
	    一般来说在这里才将图像数据加载入内存,之前存的是图像的保存路径
	    '''
        _int_label = int(self.img_list[item][1])	# label直接用0,1,2,3,4...表示不同类别
        label = torch.tensor(_int_label,dtype=torch.long)
        img = self.ProcessImgResize(self.img_list[item][0])
        return img, label

    def ProcessImgResize(self, filename):
    	'''
    	对图像进行一些预处理
    	'''
        _img = cv2.imread(filename)
        _img = cv2.resize(_img, (mycfg.IMG_WIDTH, mycfg.IMG_HEIGHT), interpolation=cv2.INTER_CUBIC)
        _img = _img.transpose((2, 0, 1))
        _img = _img / 255
        _img = torch.from_numpy(_img)
        _img = _img.to(torch.float32)
        return _img

有一些的数据集类一般还会传入一个transforms函数来构造一个图像预处理序列,传入transforms函数的一个好处是作为参数传入的话可以对一些非本地数据集中的数据进行操作(比如直接通过torchvision获取的一些预存数据集CIFAR10等等),除此之外就是torchvision.transforms里面有一些预定义的图像操作函数,可以直接像拼积木一样拼成一个图像处理序列,很方便。我这里因为是用我自己下载到本地的数据集,而且比较简单就直接用自己的函数来操作了。

2. 使用Dataloader加载数据

实例化自定义的数据集类ImageClassifyDataset后,将其传给DataLoader作为参数,得到一个可遍历的数据加载器。可以通过参数batch_size控制批处理大小,shuffle控制是否乱序读取,num_workers控制用于读取数据的线程数量。

from torch.utils.data import DataLoader
from MyDataset import ImageClassifyDataset

dataset = ImageClassifyDataset(imagedir, labelfile, 10)
dataloader = DataLoader(dataset, batch_size=5, shuffle=True,num_workers=5)
for index, data in enumerate(dataloader):
	print(index)	# batch索引
	print(data)		# 一个batch的{img,label}

二. 模型设计

在这里只讨论深度学习模型的设计,pytorch中的网络结构是一层一层叠出来的,pytorch中预定义了许多可以通过参数控制的网络层结构,比如Linear、CNN、RNN、Transformer等等具体可以查阅官方文档中的torch.nn部分。
设计自己的模型结构需要继承torch.nn.Module这个类,然后实现其中的forward方法,一般在__init__中设定好网络模型的一些组件,然后在forward方法中依据输入输出顺序拼装组件。

'''
包括了各种模型、自定义的loss计算方法、optimizer
'''
import torch.nn as nn


class Simple_CNN(nn.Module):
    def __init__(self, class_num):
        super(Simple_CNN, self).__init__()
        self.class_num = class_num
        self.conv1 = nn.Sequential(
            nn.Conv2d(		# input: 3,400,600
                in_channels=3,
                out_channels=8,
                kernel_size=5,
                stride=1,
                padding=2
            ),
            nn.Conv2d(
                in_channels=8,
                out_channels=16,
                kernel_size=5,
                stride=1,
                padding=2
            ),
            nn.AvgPool2d(2),  # 16,400,600 --> 16,200,300
            nn.BatchNorm2d(16),
            nn.LeakyReLU(),
            nn.Conv2d(
                in_channels=16,
                out_channels=16,
                kernel_size=5,
                stride=1,
                padding=2
            ),
            nn.Conv2d(
                in_channels=16,
                out_channels=8,
                kernel_size=5,
                stride=1,
                padding=2
            ),
            nn.AvgPool2d(2),  # 8,200,300 --> 8,100,150
            nn.BatchNorm2d(8),
            nn.LeakyReLU(),
            nn.Conv2d(
                in_channels=8,
                out_channels=8,
                kernel_size=3,
                stride=1,
                padding=1
            ),
            nn.Conv2d(
                in_channels=8,
                out_channels=1,
                kernel_size=3,
                stride=1,
                padding=1
            ),
            nn.AvgPool2d(2),  # 1,100,150 --> 1,50,75
            nn.BatchNorm2d(1),
            nn.LeakyReLU()
        )
        self.line = nn.Sequential(
            nn.Linear(
                in_features=50 * 75,
                out_features=self.class_num
            ),
            nn.Softmax()
        )

    def forward(self, x):
        x = self.conv1(x)
        x = x.view(-1, 50 * 75)
        y = self.line(x)
        return y

上面我定义的模型中包括卷积组件conv1和全连接组件line,卷积组件中包括了一些卷积层,一般是按照{卷积层、池化层、激活函数}的顺序拼接,其中我还在激活函数之前添加了一个BatchNorm2d层对上层的输出进行正则化以免传入激活函数的值过小(梯度消失)或过大(梯度爆炸)。
在拼接组件时,由于我全连接层的输入是一个一维向量,所以需要将卷积组件中最后的50 × 75 50\times 7550×75大小的矩阵展平成一维的再传入全连接层(x.view(-1,50*75))

三. 训练

实例化模型后,网络模型的训练需要定义损失函数与优化器,损失函数定义了网络输出与标签的差距,依据不同的任务需要定义不同的合适的损失函数,而优化器则定义了神经网络中的参数如何基于损失来更新,目前神经网络最常用的优化器就是SGD(随机梯度下降算法) 及其变种。
在我这个简单的分类器模型中,直接用的多分类任务最常用的损失函数CrossEntropyLoss()以及优化器SGD。

self.cnnmodel = Simple_CNN(mycfg.CLASS_NUM)
self.criterion = nn.CrossEntropyLoss()	# 交叉熵,标签应该是0,1,2,3...的形式而不是独热的
self.optimizer = optim.SGD(self.cnnmodel.parameters(), lr=mycfg.LEARNING_RATE, momentum=0.9)

训练过程其实很简单,使用dataloader依照batch读出数据后,将input放入网络模型中计算得到网络的输出,然后基于标签通过损失函数计算Loss,并将Loss反向传播回神经网络(在此之前需要清理上一次循环时的梯度),最后通过优化器更新权重。训练部分代码如下:

for each_epoch in range(mycfg.MAX_EPOCH):
            running_loss = 0.0
            self.cnnmodel.train()
            for index, data in enumerate(self.dataloader):
                inputs, labels = data
                outputs = self.cnnmodel(inputs)
                loss = self.criterion(outputs, labels)

                self.optimizer.zero_grad()	# 清理上一次循环的梯度
                loss.backward()	# 反向传播
                self.optimizer.step()	# 更新参数
                running_loss += loss.item()
                if index % 200 == 199:
                    print("[{}] loss: {:.4f}".format(each_epoch, running_loss/200))
                    running_loss = 0.0
            # 保存每一轮的模型
            model_name = 'classify-{}-{}.pth'.format(each_epoch,round(all_loss/all_index,3))
            torch.save(self.cnnmodel,model_name)	# 保存全部模型

四. 测试

测试和训练的步骤差不多,也就是读取模型后通过dataloader获取数据然后将其输入网络获得输出,但是不需要进行反向传播的等操作了。比较值得注意的可能就是准确率计算方面有一些小技巧。

acc = 0.0
count = 0
self.cnnmodel = torch.load('mymodel.pth')
self.cnnmodel.eval()
for index, data in enumerate(dataloader_eval):
	inputs, labels = data   # 5,3,400,600  5,10
	count += len(labels)
	outputs = cnnmodel(inputs)
	_,predict = torch.max(outputs, 1)
	acc += (labels == predict).sum().item()
print("[{}] accurancy: {:.4f}".format(each_epoch, acc / count))

我这里采用的是保存全部模型并加载全部模型的方法,这种方法的好处是在使用模型时可以完全将其看作一个黑盒,但是在模型比较大时这种方法会很费事。此时可以采用只保存参数不保存网络结构的方法,在每一次使用模型时需要读取参数赋值给已经实例化的模型:

torch.save(cnnmodel.state_dict(), "my_resnet.pth")
cnnmodel = Simple_CNN()
cnnmodel.load_state_dict(torch.load("my_resnet.pth"))

结语

至此整个流程就说完了,是一个小白级的图像分类任务流程,因为前段时间一直在做android方面的事,所以有点生疏了,就写了这篇博客记录一下,之后应该还会写一下seq2seq以及image caption任务方面的模型构造与训练过程,完整代码之后也会统一放到github上给大家做参考。

以上就是基于PyTorch实现一个简单的CNN图像分类器的详细内容,更多关于PyTorch实现CNN图像分类器的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python字符类型的一些方法小结
May 16 Python
Python3.6简单操作Mysql数据库
Sep 12 Python
Python网络编程详解
Oct 31 Python
Python基于ThreadingTCPServer创建多线程代理的方法示例
Jan 11 Python
Python实现识别手写数字大纲
Jan 29 Python
Python操作Excel插入删除行的方法
Dec 10 Python
详解Python:面向对象编程
Apr 10 Python
pytorch使用Variable实现线性回归
May 21 Python
Python+pyplot绘制带文本标注的柱状图方法
Jul 08 Python
python 读取修改pcap包的例子
Jul 23 Python
wxPython+Matplotlib绘制折线图表
Nov 19 Python
15行Python代码实现免费发送手机短信推送消息功能
Feb 27 Python
python 爬取华为应用市场评论
python 开心网和豆瓣日记爬取的小爬虫
May 29 #Python
Python趣味挑战之实现简易版音乐播放器
新手必备Python开发环境搭建教程
Keras多线程机制与flask多线程冲突的解决方案
May 28 #Python
pytorch 6 batch_train 批训练操作
May 28 #Python
pytorch 如何使用batch训练lstm网络
May 28 #Python
You might like
PHP无刷新上传文件实现代码
2011/09/19 PHP
PHP简单读取xml文件的方法示例
2017/04/20 PHP
在 Laravel 中动态隐藏 API 字段的方法
2019/10/25 PHP
巧妙破除网页右键禁用的十大绝招
2006/08/12 Javascript
javascript div 弹出可拖动窗口
2009/02/26 Javascript
js 鼠标点击事件及其它捕获
2009/06/04 Javascript
js过滤数组重复元素的方法
2010/09/05 Javascript
JavaScript中“+”的陷阱深刻理解
2012/12/04 Javascript
jquery 页面滚动到指定DIV实现代码
2013/09/25 Javascript
基于javascript实现图片切换效果
2016/04/17 Javascript
浅谈javascript中的Function和Arguments
2016/08/30 Javascript
jQuery布局组件EasyUI Layout使用方法详解
2017/02/28 Javascript
JS字符串长度判断,超出进行自动截取的实例(支持中文)
2017/03/06 Javascript
vue-router配合ElementUI实现导航的实例
2018/02/11 Javascript
Vue2.0中集成UEditor富文本编辑器的方法
2018/03/03 Javascript
4个顶级开源JavaScript图表库
2018/09/29 Javascript
微信小程序导航栏跟随滑动效果的实现代码
2019/05/14 Javascript
Vue实现背景更换颜色操作
2020/07/17 Javascript
python实现在目录中查找指定文件的方法
2014/11/11 Python
Python基础篇之初识Python必看攻略
2016/06/23 Python
Python+Turtle动态绘制一棵树实例分享
2018/01/16 Python
django静态文件加载的方法
2018/05/20 Python
python dataframe 输出结果整行显示的方法
2018/06/14 Python
详解Django+uwsgi+Nginx上线最佳实战
2019/03/14 Python
python Qt5实现窗体跟踪鼠标移动
2019/12/13 Python
python 等差数列末项计算方式
2020/05/03 Python
Python基于smtplib协议实现发送邮件
2020/06/03 Python
用python给csv里的数据排序的具体代码
2020/07/17 Python
python 匿名函数与三元运算学习笔记
2020/10/23 Python
html5 自定义播放器核心代码
2013/12/20 HTML / CSS
雅诗兰黛(Estee Lauder)英国官方网站:世界顶级化妆品牌
2016/12/29 全球购物
后勤人员自我鉴定
2013/10/20 职场文书
租房协议书
2014/04/10 职场文书
促销活动总结模板
2014/07/01 职场文书
设立有限责任公司出资协议书
2014/11/01 职场文书
史上最牛辞职信
2015/05/13 职场文书