pytorch 如何使用batch训练lstm网络


Posted in Python onMay 28, 2021

batch的lstm

# 导入相应的包
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as Data 
torch.manual_seed(1) 
 
# 准备数据的阶段
def prepare_sequence(seq, to_ix):
    idxs = [to_ix[w] for w in seq]
    return torch.tensor(idxs, dtype=torch.long)
  
with open("/home/lstm_train.txt", encoding='utf8') as f:
    train_data = []
    word = []
    label = []
    data = f.readline().strip()
    while data:
        data = data.strip()
        SP = data.split(' ')
        if len(SP) == 2:
            word.append(SP[0])
            label.append(SP[1])
        else:
            if len(word) == 100 and 'I-PRO' in label:
                train_data.append((word, label))
            word = []
            label = []
        data = f.readline()
 
word_to_ix = {}
for sent, _ in train_data:
    for word in sent:
        if word not in word_to_ix:
            word_to_ix[word] = len(word_to_ix)
 
tag_to_ix = {"O": 0, "I-PRO": 1}
for i in range(len(train_data)):
    train_data[i] = ([word_to_ix[t] for t in train_data[i][0]], [tag_to_ix[t] for t in train_data[i][1]])
 
# 词向量的维度
EMBEDDING_DIM = 128
 
# 隐藏层的单元数
HIDDEN_DIM = 128
 
# 批大小
batch_size = 10  
class LSTMTagger(nn.Module):
 
    def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size, batch_size):
        super(LSTMTagger, self).__init__()
        self.hidden_dim = hidden_dim
        self.batch_size = batch_size
        self.word_embeddings = nn.Embedding(vocab_size, embedding_dim)
 
        # The LSTM takes word embeddings as inputs, and outputs hidden states
        # with dimensionality hidden_dim.
        self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
 
        # The linear layer that maps from hidden state space to tag space
        self.hidden2tag = nn.Linear(hidden_dim, tagset_size)
 
    def forward(self, sentence):
        embeds = self.word_embeddings(sentence)
        # input_tensor = embeds.view(self.batch_size, len(sentence) // self.batch_size, -1)
        lstm_out, _ = self.lstm(embeds)
        tag_space = self.hidden2tag(lstm_out)
        scores = F.log_softmax(tag_space, dim=2)
        return scores
 
    def predict(self, sentence):
        embeds = self.word_embeddings(sentence)
        lstm_out, _ = self.lstm(embeds)
        tag_space = self.hidden2tag(lstm_out)
        scores = F.log_softmax(tag_space, dim=2)
        return scores 
 
loss_function = nn.NLLLoss()
model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix), batch_size)
optimizer = optim.SGD(model.parameters(), lr=0.1)
 
data_set_word = []
data_set_label = []
for data_tuple in train_data:
    data_set_word.append(data_tuple[0])
    data_set_label.append(data_tuple[1])
torch_dataset = Data.TensorDataset(torch.tensor(data_set_word, dtype=torch.long), torch.tensor(data_set_label, dtype=torch.long))
# 把 dataset 放入 DataLoader
loader = Data.DataLoader(
    dataset=torch_dataset,  # torch TensorDataset format
    batch_size=batch_size,  # mini batch size
    shuffle=True,  #
    num_workers=2,  # 多线程来读数据
)
 
# 训练过程
for epoch in range(200):
    for step, (batch_x, batch_y) in enumerate(loader):
        # 梯度清零
        model.zero_grad()
        tag_scores = model(batch_x)
 
        # 计算损失
        tag_scores = tag_scores.view(-1, tag_scores.shape[2])
        batch_y = batch_y.view(batch_y.shape[0]*batch_y.shape[1])
        loss = loss_function(tag_scores, batch_y)
        print(loss)
        # 后向传播
        loss.backward()
 
        # 更新参数
        optimizer.step()
 
# 测试过程
with torch.no_grad():
    inputs = torch.tensor([data_set_word[0]], dtype=torch.long)
    print(inputs)
    tag_scores = model.predict(inputs)
    print(tag_scores.shape)
    print(torch.argmax(tag_scores, dim=2))

补充:PyTorch基础-使用LSTM神经网络实现手写数据集识别

看代码吧~

import numpy as np
import torch
from torch import nn,optim
from torch.autograd import Variable
from torchvision import datasets,transforms
from torch.utils.data import DataLoader
# 训练集
train_data = datasets.MNIST(root="./", # 存放位置
                            train = True, # 载入训练集
                            transform=transforms.ToTensor(), # 把数据变成tensor类型
                            download = True # 下载
                           )
# 测试集
test_data = datasets.MNIST(root="./",
                            train = False,
                            transform=transforms.ToTensor(),
                            download = True
                           )
# 批次大小
batch_size = 64
# 装载训练集
train_loader = DataLoader(dataset=train_data,batch_size=batch_size,shuffle=True)
# 装载测试集
test_loader = DataLoader(dataset=test_data,batch_size=batch_size,shuffle=True)
for i,data in enumerate(train_loader):
    inputs,labels = data
    print(inputs.shape)
    print(labels.shape)
    break
# 定义网络结构
class LSTM(nn.Module):
    def __init__(self):
        super(LSTM,self).__init__()# 初始化
        self.lstm = torch.nn.LSTM(
            input_size = 28, # 表示输入特征的大小
            hidden_size = 64, # 表示lstm模块的数量
            num_layers = 1, # 表示lstm隐藏层的层数
            batch_first = True # lstm默认格式input(seq_len,batch,feature)等于True表示input和output变成(batch,seq_len,feature)
        )
        self.out = torch.nn.Linear(in_features=64,out_features=10)
        self.softmax = torch.nn.Softmax(dim=1)
    def forward(self,x):
        # (batch,seq_len,feature)
        x = x.view(-1,28,28)
        # output:(batch,seq_len,hidden_size)包含每个序列的输出结果
        # 虽然lstm的batch_first为True,但是h_n,c_n的第0个维度还是num_layers
        # h_n :[num_layers,batch,hidden_size]只包含最后一个序列的输出结果
        # c_n:[num_layers,batch,hidden_size]只包含最后一个序列的输出结果
        output,(h_n,c_n) = self.lstm(x)
        output_in_last_timestep = h_n[-1,:,:]
        x = self.out(output_in_last_timestep)
        x = self.softmax(x)
        return x
# 定义模型
model = LSTM()
# 定义代价函数
mse_loss = nn.CrossEntropyLoss()# 交叉熵
# 定义优化器
optimizer = optim.Adam(model.parameters(),lr=0.001)# 随机梯度下降
# 定义模型训练和测试的方法
def train():
    # 模型的训练状态
    model.train()
    for i,data in enumerate(train_loader):
        # 获得一个批次的数据和标签
        inputs,labels = data
        # 获得模型预测结果(64,10)
        out = model(inputs)
        # 交叉熵代价函数out(batch,C:类别的数量),labels(batch)
        loss = mse_loss(out,labels)
        # 梯度清零
        optimizer.zero_grad()
        # 计算梯度
        loss.backward()
        # 修改权值
        optimizer.step()
        
def test():
    # 模型的测试状态
    model.eval()
    correct = 0 # 测试集准确率
    for i,data in enumerate(test_loader):
        # 获得一个批次的数据和标签
        inputs,labels = data
        # 获得模型预测结果(64,10)
        out = model(inputs)
        # 获得最大值,以及最大值所在的位置
        _,predicted = torch.max(out,1)
        # 预测正确的数量
        correct += (predicted==labels).sum()
    print("Test acc:{0}".format(correct.item()/len(test_data)))
    
    correct = 0
    for i,data in enumerate(train_loader): # 训练集准确率
        # 获得一个批次的数据和标签
        inputs,labels = data
        # 获得模型预测结果(64,10)
        out = model(inputs)
        # 获得最大值,以及最大值所在的位置
        _,predicted = torch.max(out,1)
        # 预测正确的数量
        correct += (predicted==labels).sum()
    print("Train acc:{0}".format(correct.item()/len(train_data)))
# 训练
for epoch in range(10):
    print("epoch:",epoch)
    train()
    test()

pytorch 如何使用batch训练lstm网络

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python连接远程ftp服务器并列出目录下文件的方法
Apr 01 Python
解决Linux系统中python matplotlib画图的中文显示问题
Jun 15 Python
Python实现的生成格雷码功能示例
Jan 24 Python
对numpy和pandas中数组的合并和拆分详解
Apr 11 Python
使用pycharm生成代码模板的实例
May 23 Python
virtualenv 指定 python 解释器的版本方法
Oct 25 Python
Laravel框架表单验证格式化输出的方法
Sep 25 Python
基于python实现从尾到头打印链表
Nov 02 Python
python GUI库图形界面开发之PyQt5访问系统剪切板QClipboard类详细使用方法与实例
Feb 27 Python
基于Python编写一个计算器程序,实现简单的加减乘除和取余二元运算
Aug 05 Python
基于python模拟TCP3次握手连接及发送数据
Nov 06 Python
微软开源最强Python自动化神器Playwright(不用写一行代码)
Jan 05 Python
使用Pytorch训练two-head网络的操作
May 28 #Python
使用Python的开发框架Brownie部署以太坊智能合约
使用Pytorch实现two-head(多输出)模型的操作
8g内存用python读取10文件_面试题-python 如何读取一个大于 10G 的txt文件?
用python画城市轮播地图
用Python实现一个打字速度测试工具来测试你的手速
解决Pytorch dataloader时报错每个tensor维度不一样的问题
May 28 #Python
You might like
PHP服务器页面间跳转实现方法
2012/08/02 PHP
PHP编写的图片验证码类文件分享
2016/06/06 PHP
Laravel 5.5基于内置的Auth模块实现前后台登陆详解
2017/12/21 PHP
PHP实现十进制数字与二十六进制字母串相互转换操作示例
2018/08/10 PHP
django中的ajax组件教程详解
2018/10/18 PHP
本地图片预览(支持IE6/IE7/IE8/Firefox3)经验总结
2013/03/25 Javascript
jquery引用方法时传递参数原理分析
2014/10/13 Javascript
jQuery实现鼠标悬停显示提示信息窗口的方法
2015/04/30 Javascript
layer实现弹窗提交信息
2016/12/12 Javascript
Angular实现购物车计算示例代码
2017/02/21 Javascript
详解create-react-app 2.0版本如何启用装饰器语法
2018/10/23 Javascript
Node.js Buffer模块功能及常用方法实例分析
2019/01/05 Javascript
深入了解Hybrid App技术的相关知识
2019/07/17 Javascript
vue3.0中使用postcss-pxtorem的具体方法
2019/11/20 Javascript
JavaScript 实现HTML DOM增删改查操作的常见方法详解
2020/01/04 Javascript
vue-amap根据地址回显地图并mark的操作
2020/11/03 Javascript
python多线程操作实例
2014/11/21 Python
Django开发中复选框用法示例
2018/03/20 Python
python获取交互式ssh shell的方法
2019/02/14 Python
解决python文件双击运行秒退的问题
2019/06/24 Python
Python高阶函数、常用内置函数用法实例分析
2019/12/26 Python
django的autoreload机制实现
2020/06/03 Python
Python爬虫之Spider类用法简单介绍
2020/08/04 Python
Pycharm添加虚拟解释器报错问题解决方案
2020/10/13 Python
轻松掌握CSS3中的字体大小单位rem的使用方法
2016/05/24 HTML / CSS
中国领先的专业演出票务网:永乐票务
2016/08/29 全球购物
欧姆龙医疗保健与医疗产品:Omron Healthcare
2020/02/10 全球购物
C#笔试题
2015/07/14 面试题
门卫人员岗位职责
2013/12/24 职场文书
销售职业生涯规划范文
2014/03/14 职场文书
2014年教师节寄语
2014/04/03 职场文书
车辆工程专业求职信
2014/06/14 职场文书
建国大业观后感800字
2015/06/01 职场文书
Go语言切片前或中间插入项与内置copy()函数详解
2021/04/27 Golang
Python用any()函数检查字符串中的字母以及如何使用all()函数
2022/04/14 Python
Win11 22H2 2022怎么更新? 获得Win1122H22022版本升级技巧
2022/09/23 数码科技