使用Tensorflow将自己的数据分割成batch训练实例


Posted in Python onJanuary 20, 2020

学习神经网络的时候,网上的数据集已经分割成了batch,训练的时候直接使用batch.next()就可以获取batch,但是有的时候需要使用自己的数据集,然而自己的数据集不是batch形式,就需要将其转换为batch形式,本文将介绍一个将数据打包成batch的方法。

一、tf.slice_input_producer()

首先需要讲解两个函数,第一个函数是 :tf.slice_input_producer(),这个函数的作用是从输入的tensor_list按要求抽取一个tensor放入文件名队列,下面解释下各个参数:

tf.slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None,
       capacity=32, shared_name=None, name=None)

tensor_list 这个就是输入,格式为tensor的列表;一般为[data, label],即由特征和标签组成的数据集

num_epochs 这个是你抽取batch的次数,如果没有给定值,那么将会抽取无数次batch(这会导致你训练过程停不下来),如果给定值,那么在到达次数之后就会报OutOfRange的错误

shuffle 是否随机打乱,如果为False,batch是按顺序抽取;如果为True,batch是随机抽取

seed 随机种子

capcity 队列容量的大小,为整数

name 名称

举个例子:我的data的shape为(4000,10),label的shape为(4000,2),运行下面这行代码

input_queue = tf.train.slice_input_producer([data, label], num_epochs=1, shuffle=True, capacity=32 )

结果如图,可以看出返回值为一个包含两组数据的list,每个list的shape与输入的data和label的shape对应

使用Tensorflow将自己的数据分割成batch训练实例

二、tf.train.batch()& tf.train.shuffle_batch()

第二个函数为:tf.train.batch(),tf.train.shuffle_batch(),这个函数的作用为生成大小为batch_size的tensor,下面解释下各个参数:

tf.train.batch([data, label], batch_size=batch_size, capacity=capacity,num_threads=num_thread,allow_smaller_final_batch= True)
tf.train.shuffle_batch([example, label], batch_size=batch_size, capacity=capacity,num_threads=num_thread,allow_smaller_final_batch=True)

[data,label] 输入的样本和标签

batch_size batch的大小

capcity 队列的容量

num_threads 线程数,使用多少个线程来控制整个队列

allow_smaller_final_batch 这个是当最后的几个样本不够组成一个batch的时候用的参数,如果为True则会重新组成一个batch

下面给出生成batch的函数,由上面两个函数组成:

def get_Batch(data, label, batch_size):
 print(data.shape, label.shape)
 input_queue = tf.train.slice_input_producer([data, label], num_epochs=1, shuffle=True, capacity=32 ) 
 x_batch, y_batch = tf.train.batch(input_queue, batch_size=batch_size, num_threads=1, capacity=32, allow_smaller_final_batch=False)
 return x_batch, y_batch

还是同样的输入,batch_size设为2000,看下运行后的返回值的shape:

使用Tensorflow将自己的数据分割成batch训练实例

可以发现,返回是样本数目为2000的tensor,也就是达到了将自己的数据打包成batch的功能

三、batch的使用方法

生成batch只完成了一半,后面的使用方法也比较复杂,直接上一个完整的程序来讲解会方便理解一些:下面代码构建了一个单层感知机,对数据进行分类,主要看一下训练过程中如何使用生成好了的batch,具体细节都写在注释里面了。

import tensorflow as tf
import scipy.io as sio
import numpy as np
 
 
def get_Batch(data, label, batch_size):
 print(data.shape, label.shape)
 input_queue = tf.train.slice_input_producer([data, label], num_epochs=1, shuffle=True, capacity=32 ) 
 x_batch, y_batch = tf.train.batch(input_queue, batch_size=batch_size, num_threads=1, capacity=32, allow_smaller_final_batch=False)
 return x_batch, y_batch
 
 
data = sio.loadmat('data.mat')
train_x = data['train_x']
train_y = data['train_y']
test_x = data['test_x']
test_y = data['test_y']
 
x = tf.placeholder(tf.float32, [None, 10])
y = tf.placeholder(tf.float32, [None, 2])
 
w = tf.Variable(tf.truncated_normal([10, 2], stddev=0.1))
b = tf.Variable(tf.truncated_normal([2], stddev=0.1))
pred = tf.nn.softmax(tf.matmul(x, w) + b)
 
loss = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices=[1]))
optimizer = tf.train.AdamOptimizer(2e-5).minimize(loss)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(pred, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='evaluation')
 
x_batch, y_batch = get_Batch(train_x, train_y, 1000)
# 训练
with tf.Session() as sess:
 #初始化参数
 sess.run(tf.global_variables_initializer())
 sess.run(tf.local_variables_initializer())
 # 开启协调器
 coord = tf.train.Coordinator()
 # 使用start_queue_runners 启动队列填充
 threads = tf.train.start_queue_runners(sess, coord)
 epoch = 0
 try:
  while not coord.should_stop():
   # 获取训练用的每一个batch中batch_size个样本和标签
   data, label = sess.run([x_batch, y_batch])
   sess.run(optimizer, feed_dict={x: data, y: label})
   train_accuracy = accuracy.eval({x: data, y: label})
   test_accuracy = accuracy.eval({x: test_x, y: test_y})
   print("Epoch %d, Training accuracy %g, Testing accuracy %g" % (epoch, train_accuracy, test_accuracy))
   epoch = epoch + 1
 except tf.errors.OutOfRangeError: # num_epochs 次数用完会抛出此异常
  print("---Train end---")
 finally:
  # 协调器coord发出所有线程终止信号
  coord.request_stop()
  print('---Programm end---')
 coord.join(threads) # 把开启的线程加入主线程,等待threads结束

总共训练的次数为(样本数目/batch_size)*num_epochs

四、 简单生成Batch的方法

最近发现了一种简单生生成batch的方法,实现简单,操作方便,就是时间复杂度可能高了一点,直接上代码。通过np.random.choice方法每次在范围[0, len(all_data))内抽取大小为size的索引。然后通过这部分索引构建batch。

epoch = 150
for i in tqdm(range(epoch)):
 # 在total_train_xs, total_train_ys数据集中随机抽取batch_size个样本出来
 # 作为本轮迭代的训练数据batch_xs, batch_ys
 batch_size = 1000
 sample_idxs = np.random.choice(range(len(all_data)), size=batch_size)
 batch_xs = []
 batch_ys = []
 
 val_sample_idxs = np.random.choice(range(len(all_data)), size=batch_size)
 val_batch_xs = []
 val_batch_ys = []
 
 for j in range(batch_size):
  train_id = sample_idxs[j]
  batch_xs.append(all_data[train_id])
  batch_ys.append(all_label[train_id])
 
  val_id = val_sample_idxs[j]
  val_batch_xs.append(all_data[val_id])
  val_batch_ys.append(all_label[val_id])
 
 batch_xs = np.array(batch_xs)
 batch_ys = np.array(batch_ys)
 val_batch_xs = np.array(val_batch_xs)
 val_batch_ys = np.array(val_batch_ys)
 
 
 # 喂训练数据进去训练
 sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
 if i % 50 == 0:
  y_train_pred = np.array(sess.run(y, feed_dict={x: batch_xs})).reshape(len(batch_xs))
  y_pred = np.array(sess.run(y, feed_dict={x: val_batch_xs})).reshape(len(val_batch_xs))
  # draw(y_test, y_pred)
  print("Iteration %d, train RMSE %f, val RMSE %f" % (i, calcaulateRMSE(batch_ys, y_train_pred), calcaulateRMSE(val_batch_ys, y_pred)))

以上这篇使用Tensorflow将自己的数据分割成batch训练实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
用Python制作简单的钢琴程序的教程
Apr 01 Python
用map函数来完成Python并行任务的简单示例
Apr 02 Python
Python 使用with上下文实现计时功能
Mar 09 Python
python使用RNN实现文本分类
May 24 Python
Selenium(Python web测试工具)基本用法详解
Aug 10 Python
python内置数据类型之列表操作
Nov 12 Python
python直接获取API传递回来的参数方法
Dec 17 Python
python虚拟环境迁移方法
Jan 03 Python
django主动抛出403异常的方法详解
Jan 04 Python
python图像处理入门(一)
Apr 04 Python
python通过对字典的排序,对json字段进行排序的实例
Feb 27 Python
关于python 跨域处理方式详解
Mar 28 Python
Python JSON编解码方式原理详解
Jan 20 #Python
从训练好的tensorflow模型中打印训练变量实例
Jan 20 #Python
利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式
Jan 20 #Python
新年福利来一波之Python轻松集齐五福(demo)
Jan 20 #Python
Python timer定时器两种常用方法解析
Jan 20 #Python
tensorflow 固定部分参数训练,只训练部分参数的实例
Jan 20 #Python
如何通过Django使用本地css/js文件
Jan 20 #Python
You might like
星际争霸任务指南——人族
2020/03/04 星际争霸
PHP调用三种数据库的方法(2)
2006/10/09 PHP
PHP 中的批处理的实现
2007/06/14 PHP
从刷票了解获得客户端IP的方法
2015/09/21 PHP
laravel中的fillable和guarded属性详解
2019/10/23 PHP
什么是JavaScript
2009/08/13 Javascript
JQuery打造PHP的AJAX表单提交实例
2009/11/03 Javascript
使用jquery实现图文切换效果另加特效
2013/01/20 Javascript
JS保留两位小数 四舍五入函数的小例子
2013/11/20 Javascript
js中arguments的用法(实例讲解)
2013/11/30 Javascript
如何在JavaScript中实现私有属性的写类方式(二)
2013/12/04 Javascript
JS实现3D图片旋转展示效果代码
2015/09/22 Javascript
整理JavaScript创建对象的八种方法
2015/11/03 Javascript
Bootstrap学习笔记之js组件(4)
2016/06/12 Javascript
Javascript 获取鼠标当前的位置实现方法
2016/10/27 Javascript
Bootstrap Table快速完美搭建后台管理系统
2017/09/20 Javascript
bootstrap table方法之expandRow-collapseRow展开或关闭当前行数据
2020/08/09 Javascript
使用cropper.js裁剪头像的实例代码
2017/09/29 Javascript
Angular搜索场景中使用rxjs的操作符处理思路
2018/05/30 Javascript
微信小程序封装自定义弹窗的实现代码
2019/05/08 Javascript
js实现无缝轮播图效果
2020/03/09 Javascript
[00:52]玛尔斯技能全介绍
2019/03/06 DOTA
[01:16:50]DOTA2-DPC中国联赛 正赛 Phoenix vs CDEC BO3 第一场 3月7日
2021/03/11 DOTA
恢复百度云盘本地误删的文件脚本(简单方法)
2017/10/21 Python
Django重装mysql后启动报错:No module named ‘MySQLdb’的解决方法
2018/04/22 Python
python读写数据读写csv文件(pandas用法)
2020/12/14 Python
HTML5新表单元素_动力节点Java学院整理
2017/07/12 HTML / CSS
美国户外生活方式品牌:Eddie Bauer
2016/12/28 全球购物
Clearly新西兰:购买眼镜、太阳镜和隐形眼镜
2018/04/26 全球购物
写自荐信的七个技巧
2013/10/15 职场文书
财会自我鉴定范文
2013/12/27 职场文书
三方合作协议书范本
2014/04/18 职场文书
学习雷锋精神演讲稿
2014/05/10 职场文书
优质护理服务心得体会
2016/01/22 职场文书
Java 通过手写分布式雪花SnowFlake生成ID方法详解
2022/04/07 Java/Android
MySQL导致索引失效的几种情况
2022/06/25 MySQL