利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式


Posted in Python onJanuary 20, 2020

Tensorflow是目前最流行的深度学习框架,我们可以用它来搭建自己的卷积神经网络并训练自己的分类器,本文介绍怎样使用Tensorflow构建自己的CNN,怎样训练用于简单的验证码识别的分类器。本文假设你已经安装好了Tensorflow,了解过CNN的一些知识。

下面将分步介绍怎样获得训练数据,怎样使用tensorflow构建卷积神经网络,怎样训练,以及怎样测试训练出来的分类器

1. 准备训练样本

使用Python的库captcha来生成我们需要的训练样本,代码如下:

import sys 

import os 
import shutil 
import random 
import time 
#captcha是用于生成验证码图片的库,可以 pip install captcha 来安装它 
from captcha.image import ImageCaptcha 
 
#用于生成验证码的字符集 
CHAR_SET = ['0','1','2','3','4','5','6','7','8','9'] 
#字符集的长度 
CHAR_SET_LEN = 10 
#验证码的长度,每个验证码由4个数字组成 
CAPTCHA_LEN = 4 
 
#验证码图片的存放路径 
CAPTCHA_IMAGE_PATH = 'E:/Tensorflow/captcha/images/' 
#用于模型测试的验证码图片的存放路径,它里面的验证码图片作为测试集 
TEST_IMAGE_PATH = 'E:/Tensorflow/captcha/test/' 
#用于模型测试的验证码图片的个数,从生成的验证码图片中取出来放入测试集中 
TEST_IMAGE_NUMBER = 50 
 
#生成验证码图片,4位的十进制数字可以有10000种验证码 
def generate_captcha_image(charSet = CHAR_SET, charSetLen=CHAR_SET_LEN, captchaImgPath=CAPTCHA_IMAGE_PATH):   
  k = 0 
  total = 1 
  for i in range(CAPTCHA_LEN): 
    total *= charSetLen 
     
  for i in range(charSetLen): 
    for j in range(charSetLen): 
      for m in range(charSetLen): 
        for n in range(charSetLen): 
          captcha_text = charSet[i] + charSet[j] + charSet[m] + charSet[n] 
          image = ImageCaptcha() 
          image.write(captcha_text, captchaImgPath + captcha_text + '.jpg') 
          k += 1 
          sys.stdout.write("\rCreating %d/%d" % (k, total)) 
          sys.stdout.flush() 
           
#从验证码的图片集中取出一部分作为测试集,这些图片不参加训练,只用于模型的测试           
def prepare_test_set(): 
  fileNameList = []   
  for filePath in os.listdir(CAPTCHA_IMAGE_PATH): 
    captcha_name = filePath.split('/')[-1] 
    fileNameList.append(captcha_name) 
  random.seed(time.time()) 
  random.shuffle(fileNameList)  
  for i in range(TEST_IMAGE_NUMBER): 
    name = fileNameList[i] 
    shutil.move(CAPTCHA_IMAGE_PATH + name, TEST_IMAGE_PATH + name) 
             
if __name__ == '__main__': 
  generate_captcha_image(CHAR_SET, CHAR_SET_LEN, CAPTCHA_IMAGE_PATH) 
  prepare_test_set() 
  sys.stdout.write("\nFinished") 
  sys.stdout.flush()

运行上面的代码,可以生成验证码图片,

生成的验证码图片如下图所示:

利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式

利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式

2. 构建CNN,训练分类器

代码如下:

import tensorflow as tf 
import numpy as np 
from PIL import Image 
import os 
import random 
import time 
 
#验证码图片的存放路径 
CAPTCHA_IMAGE_PATH = 'E:/Tensorflow/captcha/images/' 
#验证码图片的宽度 
CAPTCHA_IMAGE_WIDHT = 160 
#验证码图片的高度 
CAPTCHA_IMAGE_HEIGHT = 60 
 
CHAR_SET_LEN = 10 
CAPTCHA_LEN = 4 
 
#60%的验证码图片放入训练集中 
TRAIN_IMAGE_PERCENT = 0.6 
#训练集,用于训练的验证码图片的文件名 
TRAINING_IMAGE_NAME = [] 
#验证集,用于模型验证的验证码图片的文件名 

VALIDATION_IMAGE_NAME = [] 

#存放训练好的模型的路径 
MODEL_SAVE_PATH = 'E:/Tensorflow/captcha/models/' 
 
def get_image_file_name(imgPath=CAPTCHA_IMAGE_PATH): 
  fileName = [] 
  total = 0 
  for filePath in os.listdir(imgPath): 
    captcha_name = filePath.split('/')[-1] 
    fileName.append(captcha_name) 
    total += 1 
  return fileName, total 
   
#将验证码转换为训练时用的标签向量,维数是 40   
#例如,如果验证码是 ‘0296' ,则对应的标签是 
# [1 0 0 0 0 0 0 0 0 0 
# 0 0 1 0 0 0 0 0 0 0 
# 0 0 0 0 0 0 0 0 0 1 
# 0 0 0 0 0 0 1 0 0 0] 
def name2label(name): 
  label = np.zeros(CAPTCHA_LEN * CHAR_SET_LEN) 
  for i, c in enumerate(name): 
    idx = i*CHAR_SET_LEN + ord(c) - ord('0') 
    label[idx] = 1 
  return label 
   
#取得验证码图片的数据以及它的标签     
def get_data_and_label(fileName, filePath=CAPTCHA_IMAGE_PATH): 
  pathName = os.path.join(filePath, fileName) 
  img = Image.open(pathName) 
  #转为灰度图 
  img = img.convert("L")     
  image_array = np.array(img)   
  image_data = image_array.flatten()/255 
  image_label = name2label(fileName[0:CAPTCHA_LEN]) 
  return image_data, image_label 
   
#生成一个训练batch   
def get_next_batch(batchSize=32, trainOrTest='train', step=0): 
  batch_data = np.zeros([batchSize, CAPTCHA_IMAGE_WIDHT*CAPTCHA_IMAGE_HEIGHT]) 
  batch_label = np.zeros([batchSize, CAPTCHA_LEN * CHAR_SET_LEN]) 
  fileNameList = TRAINING_IMAGE_NAME 
  if trainOrTest == 'validate':     
    fileNameList = VALIDATION_IMAGE_NAME 
     
  totalNumber = len(fileNameList)  
  indexStart = step*batchSize   
  for i in range(batchSize): 
    index = (i + indexStart) % totalNumber 
    name = fileNameList[index]     
    img_data, img_label = get_data_and_label(name) 
    batch_data[i, : ] = img_data 
    batch_label[i, : ] = img_label  
 
  return batch_data, batch_label 
   
#构建卷积神经网络并训练 
def train_data_with_CNN(): 
  #初始化权值 
  def weight_variable(shape, name='weight'): 
    init = tf.truncated_normal(shape, stddev=0.1) 
    var = tf.Variable(initial_value=init, name=name) 
    return var 
  #初始化偏置   
  def bias_variable(shape, name='bias'): 
    init = tf.constant(0.1, shape=shape) 
    var = tf.Variable(init, name=name) 
    return var 
  #卷积   
  def conv2d(x, W, name='conv2d'): 
    return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME', name=name) 
  #池化  
  def max_pool_2X2(x, name='maxpool'): 
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME', name=name)    
   
  #输入层 
  #请注意 X 的 name,在测试model时会用到它 
  X = tf.placeholder(tf.float32, [None, CAPTCHA_IMAGE_WIDHT * CAPTCHA_IMAGE_HEIGHT], name='data-input') 
  Y = tf.placeholder(tf.float32, [None, CAPTCHA_LEN * CHAR_SET_LEN], name='label-input')   
  x_input = tf.reshape(X, [-1, CAPTCHA_IMAGE_HEIGHT, CAPTCHA_IMAGE_WIDHT, 1], name='x-input') 
  #dropout,防止过拟合 
  #请注意 keep_prob 的 name,在测试model时会用到它 
  keep_prob = tf.placeholder(tf.float32, name='keep-prob') 
  #第一层卷积 
  W_conv1 = weight_variable([5,5,1,32], 'W_conv1') 
  B_conv1 = bias_variable([32], 'B_conv1') 
  conv1 = tf.nn.relu(conv2d(x_input, W_conv1, 'conv1') + B_conv1) 
  conv1 = max_pool_2X2(conv1, 'conv1-pool') 
  conv1 = tf.nn.dropout(conv1, keep_prob) 
  #第二层卷积 
  W_conv2 = weight_variable([5,5,32,64], 'W_conv2') 
  B_conv2 = bias_variable([64], 'B_conv2') 
  conv2 = tf.nn.relu(conv2d(conv1, W_conv2,'conv2') + B_conv2) 
  conv2 = max_pool_2X2(conv2, 'conv2-pool') 
  conv2 = tf.nn.dropout(conv2, keep_prob) 
  #第三层卷积 
  W_conv3 = weight_variable([5,5,64,64], 'W_conv3') 
  B_conv3 = bias_variable([64], 'B_conv3') 
  conv3 = tf.nn.relu(conv2d(conv2, W_conv3, 'conv3') + B_conv3) 
  conv3 = max_pool_2X2(conv3, 'conv3-pool') 
  conv3 = tf.nn.dropout(conv3, keep_prob) 
  #全链接层 
  #每次池化后,图片的宽度和高度均缩小为原来的一半,进过上面的三次池化,宽度和高度均缩小8倍 
  W_fc1 = weight_variable([20*8*64, 1024], 'W_fc1') 
  B_fc1 = bias_variable([1024], 'B_fc1') 
  fc1 = tf.reshape(conv3, [-1, 20*8*64]) 
  fc1 = tf.nn.relu(tf.add(tf.matmul(fc1, W_fc1), B_fc1)) 
  fc1 = tf.nn.dropout(fc1, keep_prob) 
  #输出层 
  W_fc2 = weight_variable([1024, CAPTCHA_LEN * CHAR_SET_LEN], 'W_fc2') 
  B_fc2 = bias_variable([CAPTCHA_LEN * CHAR_SET_LEN], 'B_fc2') 
  output = tf.add(tf.matmul(fc1, W_fc2), B_fc2, 'output') 
   
  loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=Y, logits=output)) 
  optimizer = tf.train.AdamOptimizer(0.001).minimize(loss) 
   
  predict = tf.reshape(output, [-1, CAPTCHA_LEN, CHAR_SET_LEN], name='predict') 
  labels = tf.reshape(Y, [-1, CAPTCHA_LEN, CHAR_SET_LEN], name='labels') 
  #预测结果 
  #请注意 predict_max_idx 的 name,在测试model时会用到它 
  predict_max_idx = tf.argmax(predict, axis=2, name='predict_max_idx') 
  labels_max_idx = tf.argmax(labels, axis=2, name='labels_max_idx') 
  predict_correct_vec = tf.equal(predict_max_idx, labels_max_idx) 
  accuracy = tf.reduce_mean(tf.cast(predict_correct_vec, tf.float32)) 
   
  saver = tf.train.Saver() 
  with tf.Session() as sess: 
    sess.run(tf.global_variables_initializer()) 
    steps = 0 
    for epoch in range(6000): 
      train_data, train_label = get_next_batch(64, 'train', steps) 
      sess.run(optimizer, feed_dict={X : train_data, Y : train_label, keep_prob:0.75}) 
      if steps % 100 == 0: 
        test_data, test_label = get_next_batch(100, 'validate', steps) 
        acc = sess.run(accuracy, feed_dict={X : test_data, Y : test_label, keep_prob:1.0}) 
        print("steps=%d, accuracy=%f" % (steps, acc)) 
        if acc > 0.99: 
          saver.save(sess, MODEL_SAVE_PATH+"crack_captcha.model", global_step=steps) 
          break 
      steps += 1 
 
if __name__ == '__main__':   
  image_filename_list, total = get_image_file_name(CAPTCHA_IMAGE_PATH) 
  random.seed(time.time()) 
  #打乱顺序 
  random.shuffle(image_filename_list) 
  trainImageNumber = int(total * TRAIN_IMAGE_PERCENT) 
  #分成测试集 
  TRAINING_IMAGE_NAME = image_filename_list[ : trainImageNumber] 
  #和验证集 
  VALIDATION_IMAGE_NAME = image_filename_list[trainImageNumber : ] 
  train_data_with_CNN()   
  print('Training finished')

运行上面的代码,开始训练,训练要花些时间,如果没有GPU的话,会慢些,

训练完后,输出如下结果,经过4100次的迭代,训练出来的分类器模型在验证集上识别的准确率为99.5%

利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式

生成的模型文件如下,在模型测试时将用到这些文件

利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式

3. 测试模型

编写代码,对训练出来的模型进行测试

import tensorflow as tf 

import numpy as np 
from PIL import Image 
import os 
import matplotlib.pyplot as plt  
 
CAPTCHA_LEN = 4 
 
MODEL_SAVE_PATH = 'E:/Tensorflow/captcha/models/' 
TEST_IMAGE_PATH = 'E:/Tensorflow/captcha/test/' 
 
def get_image_data_and_name(fileName, filePath=TEST_IMAGE_PATH): 
  pathName = os.path.join(filePath, fileName) 
  img = Image.open(pathName) 
  #转为灰度图 
  img = img.convert("L")     
  image_array = np.array(img)   
  image_data = image_array.flatten()/255 
  image_name = fileName[0:CAPTCHA_LEN] 
  return image_data, image_name 
 
def digitalStr2Array(digitalStr): 
  digitalList = [] 
  for c in digitalStr: 
    digitalList.append(ord(c) - ord('0')) 
  return np.array(digitalList) 
 
def model_test(): 
  nameList = [] 
  for pathName in os.listdir(TEST_IMAGE_PATH): 
    nameList.append(pathName.split('/')[-1]) 
  totalNumber = len(nameList) 
  #加载graph 
  saver = tf.train.import_meta_graph(MODEL_SAVE_PATH+"crack_captcha.model-4100.meta") 
  graph = tf.get_default_graph() 
  #从graph取得 tensor,他们的name是在构建graph时定义的(查看上面第2步里的代码) 
  input_holder = graph.get_tensor_by_name("data-input:0") 
  keep_prob_holder = graph.get_tensor_by_name("keep-prob:0") 
  predict_max_idx = graph.get_tensor_by_name("predict_max_idx:0") 
  with tf.Session() as sess: 
    saver.restore(sess, tf.train.latest_checkpoint(MODEL_SAVE_PATH)) 
    count = 0 
    for fileName in nameList: 
      img_data, img_name = get_image_data_and_name(fileName, TEST_IMAGE_PATH) 
      predict = sess.run(predict_max_idx, feed_dict={input_holder:[img_data], keep_prob_holder : 1.0})       
      filePathName = TEST_IMAGE_PATH + fileName 
      print(filePathName) 
      img = Image.open(filePathName) 
      plt.imshow(img) 
      plt.axis('off') 
      plt.show() 
      predictValue = np.squeeze(predict) 
      rightValue = digitalStr2Array(img_name) 
      if np.array_equal(predictValue, rightValue): 
        result = '正确' 
        count += 1 
      else:  
        result = '错误'       
      print('实际值:{}, 预测值:{},测试结果:{}'.format(rightValue, predictValue, result)) 
      print('\n') 
       
    print('正确率:%.2f%%(%d/%d)' % (count*100/totalNumber, count, totalNumber)) 
 
if __name__ == '__main__': 
  model_test()

对模型的测试结果如下,在测试集上识别的准确率为 94%

利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式

下面是两个识别错误的验证码

利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式

以上这篇利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Windows和Linux下使用Python访问SqlServer的方法介绍
Mar 10 Python
Python网络编程之TCP与UDP协议套接字用法示例
Feb 02 Python
python读取视频流提取视频帧的两种方法
Oct 22 Python
python批量导入数据进Elasticsearch的实例
May 30 Python
PHP实现发送和接收JSON请求
Jun 07 Python
Python Tkinter模块实现时钟功能应用示例
Jul 23 Python
教你一步步利用python实现贪吃蛇游戏
Jun 27 Python
python实现人机猜拳小游戏
Feb 03 Python
python GUI库图形界面开发之PyQt5滑块条控件QSlider详细使用方法与实例
Feb 28 Python
python接入支付宝的实例操作
Jul 20 Python
利用python清除移动硬盘中的临时文件
Oct 28 Python
使用pytorch实现线性回归
Apr 11 Python
新年福利来一波之Python轻松集齐五福(demo)
Jan 20 #Python
Python timer定时器两种常用方法解析
Jan 20 #Python
tensorflow 固定部分参数训练,只训练部分参数的实例
Jan 20 #Python
如何通过Django使用本地css/js文件
Jan 20 #Python
Python中 Global和Nonlocal的用法详解
Jan 20 #Python
Django后台管理系统的图文使用教学
Jan 20 #Python
解决Pycharm的项目目录突然消失的问题
Jan 20 #Python
You might like
PHP冒泡排序算法代码详细解读
2011/07/17 PHP
PHP中使用循环实现的金字塔图形
2014/11/08 PHP
PHP利用func_get_args和func_num_args函数实现函数重载实例
2014/11/12 PHP
php生成毫秒时间戳的实例讲解
2017/09/22 PHP
PHP应用跨时区功能的实现方法
2019/03/21 PHP
Javascript实例教程(19) 使用HoTMetal(6)
2006/12/23 Javascript
HTML DOM的nodeType值介绍
2011/03/31 Javascript
jquery实现在页面加载的时自动为日期插件添加当前日期
2014/08/20 Javascript
jQuery遍历之next()、nextAll()方法使用实例
2014/11/08 Javascript
javascript实现点击单选按钮链接转向对应网址的方法
2015/08/12 Javascript
浅谈javascript:两种注释,声明变量,定义函数
2016/10/05 Javascript
Angular2 组件通信的实例代码
2017/06/23 Javascript
JavaScript继承定义与用法实践分析
2018/05/28 Javascript
javascript数组的定义及操作实例
2019/11/10 Javascript
vue+animation实现翻页动画
2020/06/29 Javascript
微信小程序实现点击页面出现文字
2020/09/21 Javascript
[03:36]DOTA2完美大师赛coL战队趣味视频——我演你猜
2017/11/23 DOTA
Linux中Python 环境软件包安装步骤
2016/03/31 Python
python 从文件夹抽取图片另存的方法
2018/12/04 Python
Python3爬虫之urllib携带cookie爬取网页的方法
2018/12/28 Python
使用Python实现文字转语音并生成wav文件的例子
2019/08/08 Python
Python cookie的保存与读取、SSL讲解
2020/02/17 Python
python设置环境变量的作用整理
2020/02/17 Python
python 在sql语句中使用%s,%d,%f说明
2020/06/06 Python
python tkiner实现 一个小小的图片翻页功能的示例代码
2020/06/24 Python
一款利用纯css3实现的超炫3D表单的实例教程
2014/12/01 HTML / CSS
html5在移动端的屏幕适应问题示例探讨
2014/06/15 HTML / CSS
PUMA官方商城:世界领先的运动品牌之一
2016/11/16 全球购物
美国地毯购买网站:Rugs USA
2019/02/23 全球购物
公司司机岗位职责范本
2014/03/03 职场文书
工程安全员岗位职责
2014/03/09 职场文书
农林环境专业求职信
2014/03/13 职场文书
《山谷中的谜底》教学反思
2014/04/26 职场文书
大学生旷课检讨书1000字
2015/02/19 职场文书
工厂仓库管理员岗位职责
2015/04/09 职场文书
证劵公司反洗钱宣传活动总结
2015/05/08 职场文书