Python计算不规则图形面积算法实现解析


Posted in Python onNovember 22, 2019

这篇文章主要介绍了Python计算不规则图形面积算法实现解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

介绍:大三上做一个医学影像识别的项目,医生在原图上用红笔标记病灶点,通过记录红色的坐标位置可以得到病灶点的外接矩形,但是后续会涉及到红圈内的面积在外接矩形下的占比问题,有些外接矩形内有多个红色标记,在使用网上的opencv的fillPoly填充效果非常不理想,还有类似python计算任意多边形方法也不理想的情况下,自己探索出的一种效果还不错的计算多圈及不规则图形的面积的算法。

能较为准确的计算出不规则图形的面积

正文:算法的思想很简单,遍历图片每一列,通过色差判断是否遇到标记圈,将坐标全部记录,对每一列的坐标都进行最小行和最大行记录,确定每一列的最小和最大的坐标,然后上色(类似opencv的fillPoly的实现,但是细节有些区别),只是这样效果并不好,将图片旋转90度,再做一边,将两个图片的结果放在一起做与操作,得到结果就能很好的处理多圈的标记问题和多算面积的问题(比如上面的08-LM),

Python计算不规则图形面积算法实现解析

算法实现

全程只用pillow库

首先先用屏幕拾色器获取目标颜色的rgb值,我这种情况下就是(237,28,36),前期截取外接矩形也是要这一步的,颜色也一致

def pixel_wanted(pix):
   return pix==(237,28, 36)

每一列都设定翻转位初始为False,如果上一个像素点不是目标色,当前是目标色则开始记录,一旦不是目标色,停止检测

top_Pixel都设定为黑色(0,0,0)因为有图片最上方就是目标色,导致判定出问题,直接让最上面的像素初始化是黑色

coordinate_List记录了所有符合的点坐标

coordinate_List = []
top_Pixel = (0,0,0)
for x in range(im.size[0]):
  flag = False #初始化每一列翻转位为False
  for y in range(im.size[1]):
    current_pixel = im.getpixel((x,y))
    last_pixel = im.getpixel((x,y-1)) if y>0 else top_Pixel
    #翻转判定
    if pixel_wanted(current_pixel) and \
        not pixel_wanted(last_pixel):
      flag = True
    if flag and not pixel_wanted(current_pixel):
      flag = False
    if(flag):
      coordinate_List.append((x,y))

coordinate_List中的点如下图

Python计算不规则图形面积算法实现解析

然后就是将上面获得coordinate列表进行处理

将coordinate列表中每一列的最小坐标和最大坐标进行记录

因为每一列记录的数量并不确定(应该可以在上一步改进一下),所以需要遍历多次

首先找到第一个列出现的坐标,将它的行信息记录(行信息最小确定),

然后遍历出全部的同列的坐标,比较行坐标,如果大的就将最大的代替(行信息最大确定),用一个新的列表记录数据

coordinate_Min_Max_List = []
#找最小最大
for i in range(im.size[0]):
  min=-1
  max=-1
  for coordinate in coordinate_List:
    if coordinate[0] == i:
      min = coordinate[1]
      max = coordinate[1]
      break
  for coordinate in coordinate_List:
    if coordinate[0] == i:
      if coordinate[1]>max:
        max = coordinate[1]
  coordinate_Min_Max_List.append(min)
  coordinate_Min_Max_List.append(max)

其中要将min和max都初始化为一个坐标不存在的值比如-1,为了在下一步多圈且有空隙情况下,不会出现残影现象,如下图

Python计算不规则图形面积算法实现解析Python计算不规则图形面积算法实现解析

上一步的最后得到一个列表,第n列的最小行和最大行分别是第2n和2n+1元素,结果中的-1,为了让下一步不会画进去

Python计算不规则图形面积算法实现解析

然后就是绘制图片了,每一列将列表中对应的最小行到最大行涂满

#上色
for x in range(im.size[0]):
  for y in range(im.size[1]):
    min = coordinate_Min_Max_List[x*2]
    max = coordinate_Min_Max_List[x*2+1]
    if min<y<max:
      im.putpixel((x,y),(0,255,0))
    else:
      #可以把非红圈的上掩膜遮住
      pass

至此,就是类似opencv的算法实现,虽然还差翻转做与操作,但是已经比opencv生成的效果好,写成函数后续调用,

然后就是简单的翻转90度,再调用一次这个函数再做一遍

def Cal_S(im):
  im_0 = im.rotate(0)
  im_90 = im.rotate(90, expand=True)
  
  im_0 = fillPoly(im_0)
  im_90 = fillPoly(im_90)
  im_90 = im_90.rotate(-90, expand=True)

  i=0
  for x in range(im.size[0]):
    for y in range(im.size[1]):
      if(im_0.getpixel((x,y))==(0,255,0) and
      im_90.getpixel((x,y))==(0,255,0)):
        im.putpixel((x,y),(0,255,0))
        i+=1
  return i/(im.size[0]*im.size[1])

做两遍的效果图

Python计算不规则图形面积算法实现解析Python计算不规则图形面积算法实现解析

可以看到效果非常不错,但是依旧有个别图像有问题,比如十字分布的,

但现在的话误差已经降低非常多了,这些极其个别的十字现象可以手动把原图切割一下,或者干脆不处理了

Python计算不规则图形面积算法实现解析

所有代码,画出绿图片为了方便直观的查看,函数中可以把图片顺便保存一下,总体看一下效果

from PIL import Image

def pixel_wanted(pix):
  return pix==(237,28, 36)

def fillPoly(im):
  coordinate_List = []

  top_Pixel = (0,0,0)
  for x in range(im.size[0]):
    flag = False #初始化每一列翻转位为False
    for y in range(im.size[1]):
      current_pixel = im.getpixel((x,y))
      last_pixel = im.getpixel((x,y-1)) if y>0 else top_Pixel
      #翻转判定
      if pixel_wanted(current_pixel) and \
          not pixel_wanted(last_pixel):
        flag = True
      if flag and not pixel_wanted(current_pixel):
        flag = False
      if(flag):
        coordinate_List.append((x,y))
  coordinate_Min_Max_List = []
  #找最小最大
  for i in range(im.size[0]):
    min=-1
    max=-1
    for coordinate in coordinate_List:
      if coordinate[0] == i:
        min = coordinate[1]
        max = coordinate[1]
        break
    for coordinate in coordinate_List:
      if coordinate[0] == i:
        if coordinate[1]>max:
          max = coordinate[1]
    coordinate_Min_Max_List.append(min)
    coordinate_Min_Max_List.append(max)
  #上色
  for x in range(im.size[0]):
    for y in range(im.size[1]):
      min = coordinate_Min_Max_List[x*2]
      max = coordinate_Min_Max_List[x*2+1]
      if min<y<max:
        im.putpixel((x,y),(0,255,0))
      else:
        #可以把非红圈的上掩膜遮住
        pass
  return im

def Cal_S(im):
  im_0 = im.rotate(0)
  im_90 = im.rotate(90, expand=True)

  im_0 = fillPoly(im_0)
  im_90 = fillPoly(im_90)
  im_90 = im_90.rotate(-90, expand=True)

  i=0
  for x in range(im.size[0]):
    for y in range(im.size[1]):
      if(im_0.getpixel((x,y))==(0,255,0) and
      im_90.getpixel((x,y))==(0,255,0)):
        im.putpixel((x,y),(0,255,0))
        i+=1
  return i/(im.size[0]*im.size[1])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
复制粘贴功能的Python程序
Apr 04 Python
在 Django/Flask 开发服务器上使用 HTTPS
Jul 03 Python
Python 功能和特点(新手必学)
Dec 30 Python
简单总结Python中序列与字典的相同和不同之处
Jan 19 Python
Python基于lxml模块解析html获取页面内所有叶子节点xpath路径功能示例
May 16 Python
python生成13位或16位时间戳以及反向解析时间戳的实例
Mar 03 Python
python实现简单井字棋小游戏
Mar 05 Python
Django框架获取form表单数据方式总结
Apr 22 Python
Pytorch 使用opnecv读入图像由HWC转为BCHW格式方式
Jun 02 Python
Python使用socketServer包搭建简易服务器过程详解
Jun 12 Python
Python爬虫基于lxml解决数据编码乱码问题
Jul 31 Python
Python中的特殊方法以及应用详解
Sep 20 Python
python实现连续变量最优分箱详解--CART算法
Nov 22 #Python
pycharm运行scrapy过程图解
Nov 22 #Python
python迭代器常见用法实例分析
Nov 22 #Python
python自动分箱,计算woe,iv的实例代码
Nov 22 #Python
python创建学生管理系统
Nov 22 #Python
Python如何计算语句执行时间
Nov 22 #Python
python生成器用法实例详解
Nov 22 #Python
You might like
php通过ksort()函数给关联数组按照键排序的方法
2015/03/18 PHP
PHP实现提取多维数组指定一列的方法总结
2019/12/04 PHP
PHP7 字符串处理机制修改
2021/03/09 PHP
在一个js文件里远程调用jquery.js会在ie8下的一个奇怪问题
2010/11/28 Javascript
JS编程小常识很有用
2012/11/26 Javascript
jQuery中setTimeout的几种使用方法小结
2013/04/07 Javascript
Angular用来控制元素的展示与否的原生指令介绍
2015/01/07 Javascript
js实时获取并显示当前时间的方法
2015/07/31 Javascript
jquery实现select选择框内容左右移动代码分享
2015/11/21 Javascript
详解js的事件处理函数和动态创建html标记方法
2016/12/16 Javascript
JS遍历对象属性的方法示例
2017/01/10 Javascript
javaScript基础详解
2017/01/19 Javascript
angularjs中回车键触发某一事件的方法
2017/04/24 Javascript
使用JavaScript进行表单校验功能
2017/08/01 Javascript
详解基于 axios 的 Vue 项目 http 请求优化
2017/09/04 Javascript
vue-cli安装使用流程步骤详解
2018/11/08 Javascript
Vue.js 中的 v-model 指令及绑定表单元素的方法
2018/12/03 Javascript
vscode vue 文件模板的配置方法
2019/07/23 Javascript
解决layui 表单元素radio不显示渲染的问题
2019/09/04 Javascript
JavaScript生成随机验证码代码实例
2019/09/28 Javascript
Vue如何实现监听组件原生事件
2020/07/03 Javascript
python实现获取序列中最小的几个元素
2014/09/25 Python
Python实现将n个点均匀地分布在球面上的方法
2015/03/12 Python
利用Python获取赶集网招聘信息前篇
2016/04/18 Python
Python实现Mysql数据库连接池实例详解
2017/04/11 Python
详解Python下Flask-ApScheduler快速指南
2018/11/04 Python
Django--权限Permissions的例子
2019/08/28 Python
pandas apply多线程实现代码
2020/08/17 Python
python 实现Harris角点检测算法
2020/12/11 Python
浅析css3中matrix函数的使用
2016/06/06 HTML / CSS
详解三种方式实现平滑滚动页面到顶部的功能
2019/04/23 HTML / CSS
全国优秀辅导员事迹材料
2014/05/14 职场文书
关于十八大的演讲稿
2014/09/15 职场文书
部队2014年终工作总结
2014/11/27 职场文书
社区结对共建协议书
2016/03/23 职场文书
pytorch常用数据类型所占字节数对照表一览
2021/05/17 Python