python迭代器常见用法实例分析


Posted in Python onNovember 22, 2019

本文实例讲述了python迭代器常见用法。分享给大家供大家参考,具体如下:

迭代器

迭代是访问集合元素的一种方式。迭代器是一个可以记住遍历的位置的对象。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。

1. 可迭代对象

我们已经知道可以对list、tuple、str等类型的数据使用for…in…的循环语法从其中依次拿到数据进行使用,我们把这样的过程称为遍历,也叫迭代。

但是,是否所有的数据类型都可以放到for…in…的语句中,然后让for…in…每次从中取出一条数据供我们使用,即供我们迭代吗?

>>> for i in 100:
...   print(i)
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'int' object is not iterable
>>>
# int整型不是iterable,即int整型不是可以迭代的
# 我们自定义一个容器MyList用来存放数据,可以通过add方法向其中添加数据
>>> class MyList(object):
...   def __init__(self):
...       self.container = []
...   def add(self, item):
...       self.container.append(item)
...
>>> mylist = MyList()
>>> mylist.add(1)
>>> mylist.add(2)
>>> mylist.add(3)
>>> for num in mylist:
...   print(num)
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'MyList' object is not iterable
>>>
# MyList容器的对象也是不能迭代的

我们自定义了一个容器类型MyList,在将一个存放了多个数据的MyList对象放到for…in…的语句中,发现for…in…并不能从中依次取出一条数据返回给我们,也就说我们随便封装了一个可以存放多条数据的类型却并不能被迭代使用。

我们把可以通过for…in…这类语句迭代读取一条数据供我们使用的对象称之为可迭代对象(Iterable)**。

2. 如何判断一个对象是否可以迭代

可以使用 isinstance() 判断一个对象是否是 Iterable 对象:

In [50]: from collections import Iterable
In [51]: isinstance([], Iterable)
Out[51]: True
In [52]: isinstance({}, Iterable)
Out[52]: True
In [53]: isinstance('abc', Iterable)
Out[53]: True
In [54]: isinstance(mylist, Iterable)
Out[54]: False
In [55]: isinstance(100, Iterable)
Out[55]: False

3. 可迭代对象的本质

我们分析对可迭代对象进行迭代使用的过程,发现每迭代一次(即在for…in…中每循环一次)都会返回对象中的下一条数据,一直向后读取数据直到迭代了所有数据后结束。那么,在这个过程中就应该有一个“人”去记录每次访问到了第几条数据,以便每次迭代都可以返回下一条数据。我们把这个能帮助我们进行数据迭代的“人”称为迭代器(Iterator)。

可迭代对象的本质就是可以向我们提供一个这样的中间“人”即迭代器帮助我们对其进行迭代遍历使用。

可迭代对象通过__iter__方法向我们提供一个迭代器,我们在迭代一个可迭代对象的时候,实际上就是先获取该对象提供的一个迭代器,然后通过这个迭代器来依次获取对象中的每一个数据.

那么也就是说,一个具备了__iter__方法的对象,就是一个可迭代对象。

>>> class MyList(object):
...   def __init__(self):
...       self.container = []
...   def add(self, item):
...       self.container.append(item)
...   def __iter__(self):
...       """返回一个迭代器"""
...       # 我们暂时忽略如何构造一个迭代器对象
...       pass
...
>>> mylist = MyList()
>>> from collections import Iterable
>>> isinstance(mylist, Iterable)
True
>>>
# 这回测试发现添加了__iter__方法的mylist对象已经是一个可迭代对象了

4. iter()函数与next()函数

list、tuple等都是可迭代对象,我们可以通过iter()函数获取这些可迭代对象的迭代器。然后我们可以对获取到的迭代器不断使用next()函数来获取下一条数据。iter()函数实际上就是调用了可迭代对象的__iter__方法。

>>> li = [11, 22, 33, 44, 55]
>>> li_iter = iter(li)
>>> next(li_iter)
11
>>> next(li_iter)
22
>>> next(li_iter)
33
>>> next(li_iter)
44
>>> next(li_iter)
55
>>> next(li_iter)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>>

注意,当我们已经迭代完最后一个数据之后,再次调用next()函数会抛出StopIteration的异常,来告诉我们所有数据都已迭代完成,不用再执行next()函数了。

5. 如何判断一个对象是否是迭代器

可以使用 isinstance() 判断一个对象是否是 Iterator 对象:

In [56]: from collections import Iterator
In [57]: isinstance([], Iterator)
Out[57]: False
In [58]: isinstance(iter([]), Iterator)
Out[58]: True
In [59]: isinstance(iter("abc"), Iterator)
Out[59]: True

6. 迭代器Iterator

通过上面的分析,我们已经知道,迭代器是用来帮助我们记录每次迭代访问到的位置,当我们对迭代器使用next()函数的时候,迭代器会向我们返回它所记录位置的下一个位置的数据。实际上,在使用next()函数的时候,调用的就是迭代器对象的__next__方法(Python3中是对象的__next__方法,Python2中是对象的next()方法)。所以,我们要想构造一个迭代器,就要实现它的__next__方法。但这还不够,python要求迭代器本身也是可迭代的,所以我们还要为迭代器实现__iter__方法,而__iter__方法要返回一个迭代器,迭代器自身正是一个迭代器,所以迭代器的__iter__方法返回自身即可。

一个实现了__iter__方法和__next__方法的对象,就是迭代器

class MyList(object):
  """自定义的一个可迭代对象"""
  def __init__(self):
    self.items = []
  def add(self, val):
    self.items.append(val)
  def __iter__(self):
    myiterator = MyIterator(self)
    return myiterator
class MyIterator(object):
  """自定义的供上面可迭代对象使用的一个迭代器"""
  def __init__(self, mylist):
    self.mylist = mylist
    # current用来记录当前访问到的位置
    self.current = 0
  def __next__(self):
    if self.current < len(self.mylist.items):
      item = self.mylist.items[self.current]
      self.current += 1
      return item
    else:
      raise StopIteration
  def __iter__(self):
    return self
if __name__ == '__main__':
  mylist = MyList()
  mylist.add(1)
  mylist.add(2)
  mylist.add(3)
  mylist.add(4)
  mylist.add(5)
  for num in mylist:
    print(num)

7. for…in…循环的本质

for item in Iterable 循环的本质就是先通过iter()函数获取可迭代对象Iterable的迭代器,然后对获取到的迭代器不断调用next()方法来获取下一个值并将其赋值给item,当遇到StopIteration的异常后循环结束。

8. 迭代器的应用场景

我们发现迭代器最核心的功能就是可以通过next()函数的调用来返回下一个数据值。如果每次返回的数据值不是在一个已有的数据集合中读取的,而是通过程序按照一定的规律计算生成的,那么也就意味着可以不用再依赖一个已有的数据集合,也就是说不用再将所有要迭代的数据都一次性缓存下来供后续依次读取,这样可以节省大量的存储(内存)空间。

举个例子,比如,数学中有个著名的斐波拉契数列(Fibonacci),数列中第一个数为0,第二个数为1,其后的每一个数都可由前两个数相加得到:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

现在我们想要通过for…in…循环来遍历迭代斐波那契数列中的前n个数。那么这个斐波那契数列我们就可以用迭代器来实现,每次迭代都通过数学计算来生成下一个数。

class FibIterator(object):
  """斐波那契数列迭代器"""
  def __init__(self, n):
    """
    :param n: int, 指明生成数列的前n个数
    """
    self.n = n
    # current用来保存当前生成到数列中的第几个数了
    self.current = 0
    # num1用来保存前前一个数,初始值为数列中的第一个数0
    self.num1 = 0
    # num2用来保存前一个数,初始值为数列中的第二个数1
    self.num2 = 1
  def __next__(self):
    """被next()函数调用来获取下一个数"""
    if self.current < self.n:
      num = self.num1
      self.num1, self.num2 = self.num2, self.num1+self.num2
      self.current += 1
      return num
    else:
      raise StopIteration
  def __iter__(self):
    """迭代器的__iter__返回自身即可"""
    return self
if __name__ == '__main__':
  fib = FibIterator(10)
  for num in fib:
    print(num, end=" ")

9. 并不是只有for循环能接收可迭代对象

除了for循环能接收可迭代对象,list、tuple等也能接收。

li = list(FibIterator(15))
print(li)
tp = tuple(FibIterator(6))
print(tp)

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
利用Python的Flask框架来构建一个简单的数字商品支付解决方案
Mar 31 Python
Python标准库之collections包的使用教程
Apr 27 Python
Python入门_浅谈for循环、while循环
May 16 Python
Python对列表中的各项进行关联详解
Aug 15 Python
好的Python培训机构应该具备哪些条件
May 23 Python
python 字典修改键(key)的几种方法
Aug 10 Python
python把1变成01的步骤总结
Feb 27 Python
关于pytorch中网络loss传播和参数更新的理解
Aug 20 Python
如何基于Python制作有道翻译小工具
Dec 16 Python
python属于解释型语言么
Jun 15 Python
pycharm进入时每次都是insert模式的解决方式
Feb 05 Python
Python Pycharm虚拟下百度飞浆PaddleX安装报错问题及处理方法(亲测100%有效)
May 24 Python
python自动分箱,计算woe,iv的实例代码
Nov 22 #Python
python创建学生管理系统
Nov 22 #Python
Python如何计算语句执行时间
Nov 22 #Python
python生成器用法实例详解
Nov 22 #Python
关于pandas的离散化,面元划分详解
Nov 22 #Python
Python协程 yield与协程greenlet简单用法示例
Nov 22 #Python
使用pandas实现连续数据的离散化处理方式(分箱操作)
Nov 22 #Python
You might like
PHP缩略图等比例无损压缩,可填充空白区域补充色
2011/06/10 PHP
PHP 实现类似js中alert() 提示框
2015/03/18 PHP
php基于自定义函数记录log日志方法
2017/07/21 PHP
PHP实现微信提现(企业付款到零钱)
2019/08/01 PHP
Javascript闭包用法实例分析
2015/01/23 Javascript
javascript禁止访客复制网页内容的实现代码
2015/08/05 Javascript
jqGrid 学习笔记整理——进阶篇(一 )
2016/04/17 Javascript
Angular2使用Angular-CLI快速搭建工程(二)
2017/05/21 Javascript
vue.js实现单选框、复选框和下拉框示例
2017/07/18 Javascript
5分钟快速掌握JS中var、let和const的异同
2018/09/19 Javascript
微信头像地址失效踩坑记附带解决方案
2019/09/23 Javascript
Weex开发之地图篇的具体使用
2019/10/16 Javascript
js实现时间日期校验
2020/05/26 Javascript
JavaScript实现点击图片换背景
2020/11/20 Javascript
[49:07]VGJ.T vs Optic Supermajor小组赛D组 BO3 第二场 6.3
2018/06/04 DOTA
Python中工作日类库Busines Holiday的介绍与使用
2017/07/06 Python
python利用socketserver实现并发套接字功能
2018/01/26 Python
Python实现读取字符串按列分配后按行输出示例
2018/04/17 Python
用python实现k近邻算法的示例代码
2018/09/06 Python
Python argparse模块应用实例解析
2019/11/15 Python
PyCharm使用Docker镜像搭建Python开发环境
2019/12/26 Python
详解python中各种文件打开模式
2020/01/19 Python
HTML5 新表单类型示例代码
2018/03/20 HTML / CSS
Html5 页面适配iPhoneX(就是那么简单)
2019/09/05 HTML / CSS
Backcountry旗下的户外商品闪购网站:steep&cheap
2016/09/22 全球购物
新加坡鲜花速递/新加坡网上花店:Ferns N Petals
2020/08/29 全球购物
童装店创业计划书
2014/01/09 职场文书
优秀通讯员事迹材料
2014/01/28 职场文书
个人综合鉴定材料
2014/05/23 职场文书
安全标语口号
2014/06/09 职场文书
人力资源管理专业求职信
2014/07/23 职场文书
农村门前三包责任书
2014/07/25 职场文书
博士生专家推荐信
2014/09/26 职场文书
不尊敬老师检讨书范文
2014/11/19 职场文书
Pytorch实现图像识别之数字识别(附详细注释)
2021/05/11 Python
Golang 切片(Slice)实现增删改查
2022/04/22 Golang