Python OpenCV实现鼠标画框效果


Posted in Python onAugust 19, 2020

使用Python+OpenCV实现鼠标画框的代码,供大家参考,具体内容如下

Python OpenCV实现鼠标画框效果

# -*-coding: utf-8 -*-
"""
 @Project: IntelligentManufacture
 @File : user_interaction.py
 @Author : panjq
 @E-mail : pan_jinquan@163.com
 @Date : 2019-02-21 15:03:18
"""
# -*- coding: utf-8 -*-
 
import cv2
from utils import image_processing
import numpy as np
global img
global point1, point2
global g_rect
 
def on_mouse(event, x, y, flags, param):
 global img, point1, point2,g_rect
 img2 = img.copy()
 if event == cv2.EVENT_LBUTTONDOWN: # 左键点击,则在原图打点
 print("1-EVENT_LBUTTONDOWN")
 point1 = (x, y)
 cv2.circle(img2, point1, 10, (0, 255, 0), 5)
 cv2.imshow('image', img2)
 
 elif event == cv2.EVENT_MOUSEMOVE and (flags & cv2.EVENT_FLAG_LBUTTON): # 按住左键拖曳,画框
 print("2-EVENT_FLAG_LBUTTON")
 cv2.rectangle(img2, point1, (x, y), (255, 0, 0), thickness=2)
 cv2.imshow('image', img2)
 
 elif event == cv2.EVENT_LBUTTONUP: # 左键释放,显示
 print("3-EVENT_LBUTTONUP")
 point2 = (x, y)
 cv2.rectangle(img2, point1, point2, (0, 0, 255), thickness=2)
 cv2.imshow('image', img2)
 if point1!=point2:
  min_x = min(point1[0], point2[0])
  min_y = min(point1[1], point2[1])
  width = abs(point1[0] - point2[0])
  height = abs(point1[1] - point2[1])
  g_rect=[min_x,min_y,width,height]
  cut_img = img[min_y:min_y + height, min_x:min_x + width]
  cv2.imshow('ROI', cut_img)
 
def get_image_roi(rgb_image):
 '''
 获得用户ROI区域的rect=[x,y,w,h]
 :param rgb_image:
 :return:
 '''
 bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
 global img
 img=bgr_image
 cv2.namedWindow('image')
 while True:
 cv2.setMouseCallback('image', on_mouse)
 # cv2.startWindowThread() # 加在这个位置
 cv2.imshow('image', img)
 key=cv2.waitKey(0)
 if key==13 or key==32:#按空格和回车键退出
  break
 cv2.destroyAllWindows()
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 return g_rect
 
def select_user_roi(image_path):
 '''
 由于原图的分辨率较大,这里缩小后获取ROI,返回时需要重新scale对应原图
 :param image_path:
 :return:
 '''
 orig_image = image_processing.read_image(image_path)
 orig_shape = np.shape(orig_image)
 resize_image = image_processing.resize_image(orig_image, resize_height=800,resize_width=None)
 re_shape = np.shape(resize_image)
 g_rect=get_image_roi(resize_image)
 orgi_rect = image_processing.scale_rect(g_rect, re_shape,orig_shape)
 roi_image=image_processing.get_rect_image(orig_image,orgi_rect)
 image_processing.cv_show_image("RECT",roi_image)
 image_processing.show_image_rect("image",orig_image,orgi_rect)
 return orgi_rect
 
 
if __name__ == '__main__':
 # image_path="../dataset/images/IMG_0007.JPG"
 image_path="../dataset/test_images/lena.jpg"
 
 # rect=get_image_roi(image)
 rect=select_user_roi(image_path)
 print(rect)

其中image_processing.py文件如下:

# -*-coding: utf-8 -*-
"""
 @Project: IntelligentManufacture
 @File : image_processing.py
 @Author : panjq
 @E-mail : pan_jinquan@163.com
 @Date : 2019-02-14 15:34:50
"""
 
import os
import glob
import cv2
import numpy as np
import matplotlib.pyplot as plt
 
def show_image(title, image):
 '''
 调用matplotlib显示RGB图片
 :param title: 图像标题
 :param image: 图像的数据
 :return:
 '''
 # plt.figure("show_image")
 # print(image.dtype)
 plt.imshow(image)
 plt.axis('on') # 关掉坐标轴为 off
 plt.title(title) # 图像题目
 plt.show()
 
def cv_show_image(title, image):
 '''
 调用OpenCV显示RGB图片
 :param title: 图像标题
 :param image: 输入RGB图像
 :return:
 '''
 channels=image.shape[-1]
 if channels==3:
 image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # 将BGR转为RGB
 cv2.imshow(title,image)
 cv2.waitKey(0)
 
def read_image(filename, resize_height=None, resize_width=None, normalization=False):
 '''
 读取图片数据,默认返回的是uint8,[0,255]
 :param filename:
 :param resize_height:
 :param resize_width:
 :param normalization:是否归一化到[0.,1.0]
 :return: 返回的RGB图片数据
 '''
 
 bgr_image = cv2.imread(filename)
 # bgr_image = cv2.imread(filename,cv2.IMREAD_IGNORE_ORIENTATION|cv2.IMREAD_COLOR)
 if bgr_image is None:
 print("Warning:不存在:{}", filename)
 return None
 if len(bgr_image.shape) == 2: # 若是灰度图则转为三通道
 print("Warning:gray image", filename)
 bgr_image = cv2.cvtColor(bgr_image, cv2.COLOR_GRAY2BGR)
 
 rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB) # 将BGR转为RGB
 # show_image(filename,rgb_image)
 # rgb_image=Image.open(filename)
 rgb_image = resize_image(rgb_image,resize_height,resize_width)
 rgb_image = np.asanyarray(rgb_image)
 if normalization:
 # 不能写成:rgb_image=rgb_image/255
 rgb_image = rgb_image / 255.0
 # show_image("src resize image",image)
 return rgb_image
def resize_image(image,resize_height, resize_width):
 '''
 :param image:
 :param resize_height:
 :param resize_width:
 :return:
 '''
 image_shape=np.shape(image)
 height=image_shape[0]
 width=image_shape[1]
 if (resize_height is None) and (resize_width is None):#错误写法:resize_height and resize_width is None
 return image
 if resize_height is None:
 resize_height=int(height*resize_width/width)
 elif resize_width is None:
 resize_width=int(width*resize_height/height)
 image = cv2.resize(image, dsize=(resize_width, resize_height))
 return image
def scale_image(image,scale):
 '''
 :param image:
 :param scale: (scale_w,scale_h)
 :return:
 '''
 image = cv2.resize(image,dsize=None, fx=scale[0],fy=scale[1])
 return image
 
 
def get_rect_image(image,rect):
 '''
 :param image:
 :param rect: [x,y,w,h]
 :return:
 '''
 x, y, w, h=rect
 cut_img = image[y:(y+ h),x:(x+w)]
 return cut_img
def scale_rect(orig_rect,orig_shape,dest_shape):
 '''
 对图像进行缩放时,对应的rectangle也要进行缩放
 :param orig_rect: 原始图像的rect=[x,y,w,h]
 :param orig_shape: 原始图像的维度shape=[h,w]
 :param dest_shape: 缩放后图像的维度shape=[h,w]
 :return: 经过缩放后的rectangle
 '''
 new_x=int(orig_rect[0]*dest_shape[1]/orig_shape[1])
 new_y=int(orig_rect[1]*dest_shape[0]/orig_shape[0])
 new_w=int(orig_rect[2]*dest_shape[1]/orig_shape[1])
 new_h=int(orig_rect[3]*dest_shape[0]/orig_shape[0])
 dest_rect=[new_x,new_y,new_w,new_h]
 return dest_rect
 
def show_image_rect(win_name,image,rect):
 '''
 :param win_name:
 :param image:
 :param rect:
 :return:
 '''
 x, y, w, h=rect
 point1=(x,y)
 point2=(x+w,y+h)
 cv2.rectangle(image, point1, point2, (0, 0, 255), thickness=2)
 cv_show_image(win_name, image)
 
def rgb_to_gray(image):
 image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
 return image
 
def save_image(image_path, rgb_image,toUINT8=True):
 if toUINT8:
 rgb_image = np.asanyarray(rgb_image * 255, dtype=np.uint8)
 if len(rgb_image.shape) == 2: # 若是灰度图则转为三通道
 bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_GRAY2BGR)
 else:
 bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
 cv2.imwrite(image_path, bgr_image)
 
def combime_save_image(orig_image, dest_image, out_dir,name,prefix):
 '''
 命名标准:out_dir/name_prefix.jpg
 :param orig_image:
 :param dest_image:
 :param image_path:
 :param out_dir:
 :param prefix:
 :return:
 '''
 dest_path = os.path.join(out_dir, name + "_"+prefix+".jpg")
 save_image(dest_path, dest_image)
 
 dest_image = np.hstack((orig_image, dest_image))
 save_image(os.path.join(out_dir, "{}_src_{}.jpg".format(name,prefix)), dest_image)
 
if __name__=="__main__":
 image_path="../dataset/test_images/src.jpg"
 image = read_image(image_path, resize_height=None, resize_width=None)
 image = rgb_to_gray(image)
 orig_shape=np.shape(image)#shape=(h,w)
 orig_rect=[50,100,100,200]#x,y,w,h
 print("orig_shape:{}".format(orig_shape))
 show_image_rect("orig",image,orig_rect)
 
 dest_image=resize_image(image,resize_height=None,resize_width=200)
 dest_shape=np.shape(dest_image)
 print("dest_shape:{}".format(dest_shape))
 dest_rect=scale_rect(orig_rect, orig_shape, dest_shape)
 show_image_rect("dest",dest_image,dest_rect)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
使用Python的Tornado框架实现一个一对一聊天的程序
Apr 25 Python
python计算牛顿迭代多项式实例分析
May 07 Python
Python 对象中的数据类型
May 13 Python
python字符串与url编码的转换实例
May 10 Python
Python3环境安装Scrapy爬虫框架过程及常见错误
Jul 12 Python
python视频按帧截取图片工具
Jul 23 Python
Python3离线安装Requests模块问题
Oct 13 Python
Pytorch 神经网络—自定义数据集上实现教程
Jan 07 Python
在Mac中配置Python虚拟环境过程解析
Jun 22 Python
利用python 读写csv文件
Sep 10 Python
python实现web邮箱扫描的示例(附源码)
Mar 30 Python
Appium中scroll和drag_and_drop根据元素位置滑动
Feb 15 Python
python opencv鼠标事件实现画框圈定目标获取坐标信息
Apr 18 #Python
python点击鼠标获取坐标(Graphics)
Aug 10 #Python
python matplotlib库直方图绘制详解
Aug 10 #Python
python字典的遍历3种方法详解
Aug 10 #Python
python命名空间(namespace)简单介绍
Aug 10 #Python
简单介绍python封装的基本知识
Aug 10 #Python
nginx黑名单和django限速,最简单的防恶意请求方法分享
Aug 09 #Python
You might like
关于php curl获取301或302转向的网址问题的解决方法
2011/06/02 PHP
深入PHP数据加密详解
2013/06/18 PHP
php的dl函数用法实例
2014/11/06 PHP
php中stdClass的用法分析
2015/02/27 PHP
深入讲解PHP的对象注入(Object Injection)
2017/03/01 PHP
laravel实现上传图片,并且制作缩略图,按照日期存放的代码
2019/10/16 PHP
PHP8.0新功能之Match表达式的使用
2020/07/19 PHP
选择TreeView控件的树状数据节点的JS方法(jquery)
2010/02/06 Javascript
Javascript this 的一些学习总结
2012/08/31 Javascript
Javascript 检测键盘按键信息及键码值对应介绍
2013/01/03 Javascript
JavaScript Array对象扩展indexOf()方法
2014/05/09 Javascript
JavaScript通过setTimeout实时显示当前时间的方法
2015/04/16 Javascript
简介JavaScript中Math.cos()余弦方法的使用
2015/06/15 Javascript
JS模拟键盘打字效果的方法
2015/08/05 Javascript
jqTransform美化表单
2015/10/10 Javascript
轻松使用jQuery双向select控件Bootstrap Dual Listbox
2015/12/13 Javascript
js实现的简练高效拖拽功能示例
2016/12/21 Javascript
jquery实现下拉框左右选择功能
2017/02/21 Javascript
vue子组件使用自定义事件向父组件传递数据
2017/05/27 Javascript
Angular实现的自定义模糊查询、排序及三角箭头标注功能示例
2017/12/28 Javascript
vue项目中全局引入1个.scss文件的问题解决
2019/08/01 Javascript
JS 逻辑判断不要只知道用 if-else 和 switch条件判断(小技巧)
2020/05/27 Javascript
js实现简单音乐播放器
2020/06/30 Javascript
[01:19:54]DOTA2上海特级锦标赛主赛事日 - 2 败者组第二轮#1Alliance VS EHOME
2016/03/03 DOTA
matplotlib中legend位置调整解析
2017/12/19 Python
python爬虫获取淘宝天猫商品详细参数
2020/06/23 Python
Python unittest单元测试框架实现参数化
2020/04/29 Python
HTML5 新旧语法标记对我们有什么好处
2012/12/13 HTML / CSS
印尼在线购买隐形眼镜网站:Lensza.co.id
2019/04/27 全球购物
Yummie官方网站:塑身衣和衣柜必需品
2019/10/29 全球购物
德国家具折扣店:POCO
2020/02/28 全球购物
一篇.NET面试题
2014/09/29 面试题
迅雷Cued工作心得体会
2014/01/27 职场文书
党的群众路线教育实践活动对照检查材料思想汇报
2014/09/19 职场文书
黑暗中的舞者观后感
2015/06/18 职场文书
2016教师校本培训心得体会
2016/01/08 职场文书