Python数据分析:手把手教你用Pandas生成可视化图表的教程


Posted in Python onDecember 15, 2018

大家都知道,Matplotlib 是众多 Python 可视化包的鼻祖,也是Python最常用的标准可视化库,其功能非常强大,同时也非常复杂,想要搞明白并非易事。但自从Python进入3.0时代以后,pandas的使用变得更加普及,它的身影经常见于市场分析、爬虫、金融分析以及科学计算中。

作为数据分析工具的集大成者,pandas作者曾说,pandas中的可视化功能比plt更加简便和功能强大。实际上,如果是对图表细节有极高要求,那么建议大家使用matplotlib通过底层图表模块进行编码。当然,我们大部分人在工作中是不会有这样变态的要求的,所以一句import pandas as pd就足够应付全部的可视化工作了。

下面,我们总结一下PD库的一些使用方法和入门技巧。

一、线型图

对于pandas的内置数据类型,Series 和 DataFrame 都有一个用于生成各类 图表 的 plot 方法。 默认情况下, 它们所生成的是线型图。其实Series和DataFrame上的这个功能只是使用matplotlib库的plot()方法的简单包装实现。参考以下示例代码 -

import pandas as pd
import numpy as np
 
df = pd.DataFrame(np.random.randn(10,4),index=pd.date_range('2018/12/18',
 periods=10), columns=list('ABCD'))
 
df.plot()

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

如果索引由日期组成,则调用gct().autofmt_xdate()来格式化x轴,如上图所示。

我们可以使用x和y关键字绘制一列与另一列。

s = Series( np. random. randn( 10). cumsum(), index= np. arange( 0, 100, 10))
s. plot()

Python数据分析:手把手教你用Pandas生成可视化图表的教程

pandas 的大部分绘图方法都有 一个 可选的ax参数, 它可以是一个 matplotlib 的 subplot 对象。 这使你能够在网格 布局 中 更为灵活地处理 subplot 的位置。 DataFrame的plot 方法会在 一个 subplot 中为各列绘制 一条 线, 并自动创建图例( 如图所示):

df = DataFrame( np. random. randn( 10, 4). cumsum( 0), ...: columns=[' A', 'B', 'C', 'D'], index= np. arange( 0, 100, 10)) 
 
df. plot()

Python数据分析:手把手教你用Pandas生成可视化图表的教程

二、柱状图

在生成线型图的代码中加上 kind=' bar'( 垂直柱状图) 或 kind=' barh'( 水平柱状图) 即可生成柱状图。 这时,Series 和 DataFrame 的索引将会被用 作 X( bar) 或 (barh)刻度:

In [59]: fig, axes = plt. subplots( 2, 1) 
 
In [60]: data = Series( np. random. rand( 16), index= list(' abcdefghijklmnop')) 
 
In [61]: data. plot( kind=' bar', ax= axes[ 0], color=' k', alpha= 0. 7) 
 
Out[ 61]: < matplotlib. axes. AxesSubplot at 0x4ee7750> 
 
In [62]: data. plot( kind=' barh', ax= axes[ 1], color=' k', alpha= 0.

对于 DataFrame, 柱状 图 会 将 每一 行的 值 分为 一组, 如图 8- 16 所示:

In [63]: df = DataFrame( np. random. rand( 6, 4), ...: index=[' one', 'two', 'three', 'four', 'five', 'six'], ...: columns= pd. Index([' A', 'B', 'C', 'D'], name=' Genus')) 
 
In [64]: df 
 
Out[ 64]: 
 
Genus 
 
   A   B   C   D 
one 0. 301686 0. 156333 0. 371943 0. 270731 
two 0. 750589 0. 525587 0. 689429 0. 358974 
three 0. 381504 0. 667707 0. 473772 0. 632528 
four 0. 942408 0. 180186 0. 708284 0. 641783 
five 0. 840278 0. 909589 0. 010041 0. 653207 
six 0. 062854 0. 589813 0. 811318 0. 060217 
 
In [65]: df. plot( kind=' bar')

Python数据分析:手把手教你用Pandas生成可视化图表的教程

三、条形图

现在通过创建一个条形图来看看条形图是什么。条形图可以通过以下方式来创建 -

import pandas as pd
import numpy as np
 
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot.bar()

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

要生成一个堆积条形图,通过指定:pass stacked=True -

import pandas as pd
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot.bar(stacked=True)

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

要获得水平条形图,使用barh()方法 -

import pandas as pd
import numpy as np
 
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
 
df.plot.barh(stacked=True)

四、直方图

可以使用plot.hist()方法绘制直方图。我们可以指定bins的数量值。

import pandas as pd
import numpy as np
 
df = pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000),'c':
np.random.randn(1000) - 1}, columns=['a', 'b', 'c'])
 
df.plot.hist(bins=20)

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

要为每列绘制不同的直方图,请使用以下代码 -

import pandas as pd
import numpy as np
 
df=pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000),'c':
np.random.randn(1000) - 1}, columns=['a', 'b', 'c'])
 
df.hist(bins=20)

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

五、箱型图

Boxplot可以绘制调用Series.box.plot()和DataFrame.box.plot()或DataFrame.boxplot()来可视化每列中值的分布。

例如,这里是一个箱形图,表示对[0,1)上的统一随机变量的10次观察的五次试验。

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
df.plot.box()

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

六、块型图

可以使用Series.plot.area()或DataFrame.plot.area()方法创建区域图形。

import pandas as pd
import numpy as np
 
df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
df.plot.area()

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

七、散点图

可以使用DataFrame.plot.scatter()方法创建散点图。

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])
df.plot.scatter(x='a', y='b')

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

八、饼状图

饼状图可以使用DataFrame.plot.pie()方法创建。

import pandas as pd
import numpy as np
 
df = pd.DataFrame(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], columns=['x'])
df.plot.pie(subplots=True)

执行上面示例代码,得到以下结果 -

Python数据分析:手把手教你用Pandas生成可视化图表的教程

以上这篇Python数据分析:手把手教你用Pandas生成可视化图表的教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
将Python代码打包为jar软件的简单方法
Aug 04 Python
浅谈Python生成器generator之next和send的运行流程(详解)
May 08 Python
浅析Python 3 字符串中的 STR 和 Bytes 有什么区别
Oct 14 Python
python实现在遍历列表时,直接对dict元素增加字段的方法
Jan 15 Python
Python实现的排列组合、破解密码算法示例
Apr 12 Python
Python实现字符型图片验证码识别完整过程详解
May 10 Python
python打包exe开机自动启动的实例(windows)
Jun 28 Python
使用Keras画神经网络准确性图教程
Jun 15 Python
Python 如何实现访问者模式
Jul 28 Python
Python虚拟环境的创建和使用详解
Sep 07 Python
Python基于unittest实现测试用例执行
Nov 25 Python
opencv检测动态物体的实现
Jul 21 Python
浅谈python 导入模块和解决文件句柄找不到问题
Dec 15 #Python
对python当中不在本路径的py文件的引用详解
Dec 15 #Python
对python3 中方法各种参数和返回值详解
Dec 15 #Python
对python中的argv和argc使用详解
Dec 15 #Python
Python输出\u编码将其转换成中文的实例
Dec 15 #Python
对python:print打印时加u的含义详解
Dec 15 #Python
Python 最大概率法进行汉语切分的方法
Dec 14 #Python
You might like
广播爱好者需要了解的天线知识
2021/03/01 无线电
PHP与javascript对多项选择的处理
2006/10/09 PHP
php设计模式 Factory(工厂模式)
2011/06/26 PHP
php清空(删除)指定目录下的文件,不删除目录文件夹的实现代码
2014/09/04 PHP
CI分页类首页、尾页不显示的解决方法
2016/03/28 PHP
PHP模板引擎Smarty内建函数详解
2016/04/11 PHP
tp5框架内使用tp3.2分页的方法分析
2019/05/05 PHP
tp5.1 实现setInc字段自动加1
2019/10/18 PHP
一个用javascript写的select支持上下键、首字母筛选以及回车取值的功能
2009/09/09 Javascript
jQuery 锚点跳转滚动条平滑滚动一句话代码
2010/04/30 Javascript
Table冻结表头示例代码
2013/08/20 Javascript
nodejs读取memcache示例分享
2014/01/02 NodeJs
js中精确计算加法和减法示例
2014/03/28 Javascript
js鼠标滑过图片震动特效的方法
2015/02/17 Javascript
javascript实现验证身份证号的有效性并提示
2015/04/30 Javascript
Jquery结合HTML5实现文件上传
2015/06/25 Javascript
利用canvas实现的加载动画效果实例代码
2017/07/05 Javascript
Python模拟百度登录实例详解
2016/01/20 Python
Python3标准库总结
2019/02/19 Python
JetBrains PyCharm(Community版本)的下载、安装和初步使用图文教程详解
2020/03/19 Python
plt.figure()参数使用详解及运行演示
2021/01/08 Python
python爬虫用request库处理cookie的实例讲解
2021/02/20 Python
CSS3 绘制BMW logo实的现代码
2013/04/25 HTML / CSS
css3的图形3d翻转效果应用示例
2014/04/08 HTML / CSS
canvas探照灯效果的示例代码
2018/11/30 HTML / CSS
西雅图电动自行车公司:Rad Power Bikes
2020/02/02 全球购物
品学兼优的大学生自我评价
2013/09/20 职场文书
2014年大学生自我评价
2014/01/19 职场文书
高中生操行评语大全
2014/04/25 职场文书
亲子活动总结
2014/04/26 职场文书
绿色小区申报材料
2014/08/22 职场文书
交通事故和解协议书
2014/09/25 职场文书
工伤事故赔偿协议书(标准)
2014/09/29 职场文书
如何书写公司员工保密协议?
2019/06/27 职场文书
redis击穿 雪崩 穿透超详细解决方案梳理
2022/03/17 Redis
django项目、vue项目部署云服务器的详细过程
2022/07/23 Servers