pytorch显存一直变大的解决方案


Posted in Python onApril 08, 2021

在代码中添加以下两行可以解决:

torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True

补充:pytorch训练过程显存一直增加的问题

之前遇到了爆显存的问题,卡了很久,试了很多方法,总算解决了。

总结下自己试过的几种方法:

**1. 使用torch.cuda.empty_cache()

在每一个训练epoch后都添加这一行代码,可以让训练从较低显存的地方开始,但并不适用爆显存的问题,随着epoch的增加,最大显存占用仍然会提示out of memory 。

2.使用torch.backends.cudnn.enabled = True 和 torch.backends.cudnn.benchmark = True

原理不太清楚,用法和1一样。但是几乎没有效果,直接pass。

3.最重要的:查看自己的forward函数是否存在泄露。

常需要在forward函数里调用其他子函数,这时候要特别注意:

input尽量不要写在for循环里面!!!

子函数里如果有append()等函数,一定少用,能不用就不用!!!

子函数list一定少用,能不用就不用!!!

总之,子函数一般也不会太复杂,直接写出来,别各种for,嵌套,变量。!!!

补充:Pytorch显存不断增长问题的解决思路

这个问题,我先后遇到过两次,每次都异常艰辛的解决了。

在网上,关于这个问题,你可以找到各种看似不同的解决方案,但是都没能解决我的问题。所以只能自己摸索,在摸索的过程中,有了一个排查问题点的思路。

下面举个例子说一下我的思路。

大体思路

其实思路很简单,就是在代码的运行阶段输出显存占用量,观察在哪一块存在显存剧烈增加或者显存异常变化的情况。

但是在这个过程中要分级确认问题点,也即如果存在三个文件main.py、train.py、model.py。

在此种思路下,应该先在main.py中确定问题点,然后,从main.py中进入到train.py中,再次输出显存占用量,确定问题点在哪。

随后,再从train.py中的问题点,进入到model.py中,再次确认。

如果还有更深层次的调用,可以继续追溯下去。

具体例子

main.py

def train(model,epochs,data):
    for e in range(epochs):
        print("1:{}".format(torch.cuda.memory_allocated(0)))
        train_epoch(model,data)
        print("2:{}".format(torch.cuda.memory_allocated(0)))
        eval(model,data)
        print("3:{}".format(torch.cuda.memory_allocated(0)))

假设1与2之间显存增加极为剧烈,说明问题出在train_epoch中,进一步进入到train.py中。

train.py

def train_epoch(model,data):
    model.train()
    optim=torch.optimizer()
    for batch_data in data:
        print("1:{}".format(torch.cuda.memory_allocated(0)))
        output=model(batch_data)
        print("2:{}".format(torch.cuda.memory_allocated(0)))
        loss=loss(output,data.target)
        print("3:{}".format(torch.cuda.memory_allocated(0)))
        optim.zero_grad()
        print("4:{}".format(torch.cuda.memory_allocated(0)))
        loss.backward()
        print("5:{}".format(torch.cuda.memory_allocated(0)))
        utils.func(model)
        print("6:{}".format(torch.cuda.memory_allocated(0)))

如果在1,2之间,5,6之间同时出现显存增加异常的情况。此时需要使用控制变量法,例如我们先让5,6之间的代码失效,然后运行,观察是否仍然存在显存爆炸。如果没有,说明问题就出在5,6之间下一级的代码中。进入到下一级代码,进行调试:

utils.py

def func(model):
print("1:{}".format(torch.cuda.memory_allocated(0)))
a=f1(model)
print("2:{}".format(torch.cuda.memory_allocated(0)))
b=f2(a)
print("3:{}".format(torch.cuda.memory_allocated(0)))
c=f3(b)
print("4:{}".format(torch.cuda.memory_allocated(0)))
d=f4(c)
print("5:{}".format(torch.cuda.memory_allocated(0)))

此时我们再展示另一种调试思路,先注释第5行之后的代码,观察显存是否存在先训爆炸,如果没有,则注释掉第7行之后的,直至确定哪一行的代码出现导致了显存爆炸。假设第9行起作用后,代码出现显存爆炸,说明问题出在第九行,显存爆炸的问题锁定。

几种导致显存爆炸的情况

pytorch的hook机制可能导致,显存爆炸,hook函数取出某一层的输入输出跟权重后,不可进行存储,修改等操作,这会造成hook不能回收,进而导致取出的输入输出权重都可能不被pytorch回收,所以模型的负担越来也大,最终导致显存爆炸。

这种情况是我第二次遇到显存爆炸查出来的,非常让人匪夷所思。在如下代码中,p.sub_(torch.mm(k, torch.t(k)) / (alpha + torch.mm(r, k))),导致了显存爆炸,这个问题点就是通过上面的方法确定的。

这个P是一个矩阵,在使用p.sub_的方式更新P的时候,导致了显存爆炸。

将这行代码修改为p=p-(torch.mm(k, torch.t(k)) / (alpha + torch.mm(r, k))),显存爆炸的问题解决。

def pro_weight(p, x, w, alpha=1.0, cnn=True, stride=1):
                if cnn:
                    _, _, H, W = x.shape
                    F, _, HH, WW = w.shape
                    S = stride  # stride
                    Ho = int(1 + (H - HH) / S)
                    Wo = int(1 + (W - WW) / S)
                    for i in range(Ho):
                        for j in range(Wo):
                            # N*C*HH*WW, C*HH*WW = N*C*HH*WW, sum -> N*1
                            r = x[:, :, i * S: i * S + HH, j * S: j * S + WW].contiguous().view(1, -1)
                            # r = r[:, range(r.shape[1] - 1, -1, -1)]
                            k = torch.mm(p, torch.t(r))
                            p.sub_(torch.mm(k, torch.t(k)) / (alpha + torch.mm(r, k)))
                    w.grad.data = torch.mm(w.grad.data.view(F, -1), torch.t(p.data)).view_as(w)
                else:
                    r = x
                    k = torch.mm(p, torch.t(r))
                    p.sub_(torch.mm(k, torch.t(k)) / (alpha + torch.mm(r, k)))
                    w.grad.data = torch.mm(w.grad.data, torch.t(p.data))

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。如有错误或未考虑完全的地方,望不吝赐教。

Python 相关文章推荐
Python中使用 Selenium 实现网页截图实例
Jul 18 Python
python打开网页和暂停实例
Sep 30 Python
对于Python的框架中一些会话程序的管理
Apr 20 Python
mac安装pytorch及系统的numpy更新方法
Jul 26 Python
Python 打印中文字符的三种方法
Aug 14 Python
Pandas删除数据的几种情况(小结)
Jun 21 Python
Apache,wsgi,django 程序部署配置方法详解
Jul 01 Python
python利用itertools生成密码字典并多线程撞库破解rar密码
Aug 12 Python
基于python使用tibco ems代码实例
Dec 20 Python
Tensorflow 多线程设置方式
Feb 06 Python
python 实现朴素贝叶斯算法的示例
Sep 30 Python
python单向链表实例详解
May 25 Python
Python文件的操作示例的详细讲解
Django展示可视化图表的多种方式
python tkinter模块的简单使用
python如何在word中存储本地图片
python 下载文件的几种方式分享
Apr 07 #Python
完美处理python与anaconda环境变量的冲突问题
python 如何用map()函数创建多线程任务
You might like
mysql alter table命令修改表结构实例详解
2016/09/24 PHP
JS 面向对象之神奇的prototype
2011/02/26 Javascript
javascript日期转换 时间戳转日期格式
2011/11/05 Javascript
javascript表单验证 - Parsley.js使用和配置
2013/01/25 Javascript
自定义百度分享的分享按钮
2015/03/18 Javascript
javascript实现点击单选按钮链接转向对应网址的方法
2015/08/12 Javascript
详谈js中数组(array)和对象(object)的区别
2017/02/27 Javascript
js封装成插件_Canvas统计图插件编写实例
2017/09/12 Javascript
Vue入门之数据绑定(小结)
2018/01/08 Javascript
JavaScript callback回调函数用法实例分析
2018/05/08 Javascript
详解JavaScript中的强制类型转换
2019/04/15 Javascript
Python 开发Activex组件方法
2009/11/08 Python
python提取内容关键词的方法
2015/03/16 Python
python读取与写入csv格式文件的示例代码
2017/12/16 Python
Django migrations 默认目录修改的方法教程
2018/09/28 Python
python查看模块,对象的函数方法
2018/10/16 Python
对Python3+gdal 读取tiff格式数据的实例讲解
2018/12/04 Python
快速解决Django关闭Debug模式无法加载media图片与static静态文件
2020/04/07 Python
python实现梯度下降算法的实例详解
2020/08/17 Python
python 实现简易的记事本
2020/11/30 Python
HTML5 video 事件应用示例
2014/09/11 HTML / CSS
澳大利亚女性快速时尚零售商:Ally Fashion
2018/04/25 全球购物
教师自我反思材料
2014/02/14 职场文书
生物制药专业自我鉴定
2014/02/19 职场文书
社区网格化管理实施方案
2014/03/21 职场文书
还款承诺书范文
2014/05/20 职场文书
七夕情人节促销方案
2014/06/07 职场文书
力学专业求职信
2014/07/23 职场文书
优秀中职教师事迹材料
2014/08/26 职场文书
2014年技术部工作总结
2014/12/12 职场文书
好媳妇事迹材料
2014/12/24 职场文书
焦裕禄纪念馆观后感
2015/06/09 职场文书
学会掌握自己命运的十条黄金法则:
2019/08/08 职场文书
Python快速优雅的批量修改Word文档样式
2021/05/20 Python
Tomcat弱口令复现及利用
2022/05/06 Servers
Rust中的Struct使用示例详解
2022/08/14 Javascript