python实现梯度下降算法的实例详解


Posted in Python onAugust 17, 2020

python版本选择

这里选的python版本是2.7,因为我之前用python3试了几次,发现在画3d图的时候会报错,所以改用了2.7。

数据集选择

数据集我选了一个包含两个变量,三个参数的数据集,这样可以画出3d图形对结果进行验证。

部分函数总结

symbols()函数:首先要安装sympy库才可以使用。用法:

>>> x1 = symbols('x2')
>>> x1 + 1
x2 + 1

在这个例子中,x1和x2是不一样的,x2代表的是一个函数的变量,而x1代表的是python中的一个变量,它可以表示函数的变量,也可以表示其他的任何量,它替代x2进行函数的计算。实际使用的时候我们可以将x1,x2都命名为x,但是我们要知道他们俩的区别。
再看看这个例子:

>>> x = symbols('x')
>>> expr = x + 1
>>> x = 2
>>> print(expr)
x + 1

作为python变量的x被2这个数值覆盖了,所以它现在不再表示函数变量x,而expr依然是函数变量x+1的别名,所以结果依然是x+1。
subs()函数:既然普通的方法无法为函数变量赋值,那就肯定有函数来实现这个功能,用法:

>>> (1 + x*y).subs(x, pi)#一个参数时的用法
pi*y + 1
>>> (1 + x*y).subs({x:pi, y:2})#多个参数时的用法
1 + 2*pi

diff()函数:求偏导数,用法:result=diff(fun,x),这个就是求fun函数对x变量的偏导数,结果result也是一个变量,需要赋值才能得到准确结果。

代码实现:

from __future__ import division
from sympy import symbols, diff, expand
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

data = {'x1': [100, 50, 100, 100, 50, 80, 75, 65, 90, 90],
        'x2': [4, 3, 4, 2, 2, 2, 3, 4, 3, 2],
        'y': [9.3, 4.8, 8.9, 6.5, 4.2, 6.2, 7.4, 6.0, 7.6, 6.1]}#初始化数据集
theta0, theta1, theta2 = symbols('theta0 theta1 theta2', real=True)  # y=theta0+theta1*x1+theta2*x2,定义参数
costfuc = 0 * theta0
for i in range(10):
    costfuc += (theta0 + theta1 * data['x1'][i] + theta2 * data['x2'][i] - data['y'][i]) ** 2
costfuc /= 20#初始化代价函数
dtheta0 = diff(costfuc, theta0)
dtheta1 = diff(costfuc, theta1)
dtheta2 = diff(costfuc, theta2)

rtheta0 = 1
rtheta1 = 1
rtheta2 = 1#为参数赋初始值

costvalue = costfuc.subs({theta0: rtheta0, theta1: rtheta1, theta2: rtheta2})
newcostvalue = 0#用cost的值的变化程度来判断是否已经到最小值了
count = 0
alpha = 0.0001#设置学习率,一定要设置的比较小,否则无法到达最小值
while (costvalue - newcostvalue > 0.00001 or newcostvalue - costvalue > 0.00001) and count < 1000:
    count += 1
    costvalue = newcostvalue
    rtheta0 = rtheta0 - alpha * dtheta0.subs({theta0: rtheta0, theta1: rtheta1, theta2: rtheta2})
    rtheta1 = rtheta1 - alpha * dtheta1.subs({theta0: rtheta0, theta1: rtheta1, theta2: rtheta2})
    rtheta2 = rtheta2 - alpha * dtheta2.subs({theta0: rtheta0, theta1: rtheta1, theta2: rtheta2})
    newcostvalue = costfuc.subs({theta0: rtheta0, theta1: rtheta1, theta2: rtheta2})
rtheta0 = round(rtheta0, 4)
rtheta1 = round(rtheta1, 4)
rtheta2 = round(rtheta2, 4)#给结果保留4位小数,防止数值溢出
print(rtheta0, rtheta1, rtheta2)

fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(data['x1'], data['x2'], data['y'])  # 绘制散点图
xx = np.arange(20, 100, 1)
yy = np.arange(1, 5, 0.05)
X, Y = np.meshgrid(xx, yy)
Z = X * rtheta1 + Y * rtheta2 + rtheta0
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.get_cmap('rainbow'))

plt.show()#绘制3d图进行验证

结果:

python实现梯度下降算法的实例详解

python实现梯度下降算法的实例详解

实例扩展:

'''
梯度下降算法
Batch Gradient Descent
Stochastic Gradient Descent SGD
'''
__author__ = 'epleone'
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import sys

# 使用随机数种子, 让每次的随机数生成相同,方便调试
# np.random.seed(111111111)


class GradientDescent(object):
 eps = 1.0e-8
 max_iter = 1000000 # 暂时不需要
 dim = 1
 func_args = [2.1, 2.7] # [w_0, .., w_dim, b]

 def __init__(self, func_arg=None, N=1000):
 self.data_num = N
 if func_arg is not None:
 self.FuncArgs = func_arg
 self._getData()

 def _getData(self):
 x = 20 * (np.random.rand(self.data_num, self.dim) - 0.5)
 b_1 = np.ones((self.data_num, 1), dtype=np.float)
 # x = np.concatenate((x, b_1), axis=1)
 self.x = np.concatenate((x, b_1), axis=1)

 def func(self, x):
 # noise太大的话, 梯度下降法失去作用
 noise = 0.01 * np.random.randn(self.data_num) + 0
 w = np.array(self.func_args)
 # y1 = w * self.x[0, ] # 直接相乘
 y = np.dot(self.x, w) # 矩阵乘法
 y += noise
 return y

 @property
 def FuncArgs(self):
 return self.func_args

 @FuncArgs.setter
 def FuncArgs(self, args):
 if not isinstance(args, list):
 raise Exception(
 'args is not list, it should be like [w_0, ..., w_dim, b]')
 if len(args) == 0:
 raise Exception('args is empty list!!')
 if len(args) == 1:
 args.append(0.0)
 self.func_args = args
 self.dim = len(args) - 1
 self._getData()

 @property
 def EPS(self):
 return self.eps

 @EPS.setter
 def EPS(self, value):
 if not isinstance(value, float) and not isinstance(value, int):
 raise Exception("The type of eps should be an float number")
 self.eps = value

 def plotFunc(self):
 # 一维画图
 if self.dim == 1:
 # x = np.sort(self.x, axis=0)
 x = self.x
 y = self.func(x)
 fig, ax = plt.subplots()
 ax.plot(x, y, 'o')
 ax.set(xlabel='x ', ylabel='y', title='Loss Curve')
 ax.grid()
 plt.show()
 # 二维画图
 if self.dim == 2:
 # x = np.sort(self.x, axis=0)
 x = self.x
 y = self.func(x)
 xs = x[:, 0]
 ys = x[:, 1]
 zs = y
 fig = plt.figure()
 ax = fig.add_subplot(111, projection='3d')
 ax.scatter(xs, ys, zs, c='r', marker='o')

 ax.set_xlabel('X Label')
 ax.set_ylabel('Y Label')
 ax.set_zlabel('Z Label')
 plt.show()
 else:
 # plt.axis('off')
 plt.text(
 0.5,
 0.5,
 "The dimension(x.dim > 2) \n is too high to draw",
 size=17,
 rotation=0.,
 ha="center",
 va="center",
 bbox=dict(
 boxstyle="round",
 ec=(1., 0.5, 0.5),
 fc=(1., 0.8, 0.8), ))
 plt.draw()
 plt.show()
 # print('The dimension(x.dim > 2) is too high to draw')

 # 梯度下降法只能求解凸函数
 def _gradient_descent(self, bs, lr, epoch):
 x = self.x
 # shuffle数据集没有必要
 # np.random.shuffle(x)
 y = self.func(x)
 w = np.ones((self.dim + 1, 1), dtype=float)
 for e in range(epoch):
 print('epoch:' + str(e), end=',')
 # 批量梯度下降,bs为1时 等价单样本梯度下降
 for i in range(0, self.data_num, bs):
 y_ = np.dot(x[i:i + bs], w)
 loss = y_ - y[i:i + bs].reshape(-1, 1)
 d = loss * x[i:i + bs]
 d = d.sum(axis=0) / bs
 d = lr * d
 d.shape = (-1, 1)
 w = w - d

 y_ = np.dot(self.x, w)
 loss_ = abs((y_ - y).sum())
 print('\tLoss = ' + str(loss_))
 print('拟合的结果为:', end=',')
 print(sum(w.tolist(), []))
 print()
 if loss_ < self.eps:
 print('The Gradient Descent algorithm has converged!!\n')
 break
 pass

 def __call__(self, bs=1, lr=0.1, epoch=10):
 if sys.version_info < (3, 4):
 raise RuntimeError('At least Python 3.4 is required')
 if not isinstance(bs, int) or not isinstance(epoch, int):
 raise Exception(
 "The type of BatchSize/Epoch should be an integer number")
 self._gradient_descent(bs, lr, epoch)
 pass

 pass


if __name__ == "__main__":
 if sys.version_info < (3, 4):
 raise RuntimeError('At least Python 3.4 is required')

 gd = GradientDescent([1.2, 1.4, 2.1, 4.5, 2.1])
 # gd = GradientDescent([1.2, 1.4, 2.1])
 print("要拟合的参数结果是: ")
 print(gd.FuncArgs)
 print("===================\n\n")
 # gd.EPS = 0.0
 gd.plotFunc()
 gd(10, 0.01)
 print("Finished!")

到此这篇关于python实现梯度下降算法的实例详解的文章就介绍到这了,更多相关教你用python实现梯度下降算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python 冒泡,选择,插入排序使用实例
Feb 05 Python
Python中最常用的操作列表的几种方法归纳
Apr 24 Python
简介Django中内置的一些中间件
Jul 24 Python
python脚本实现验证码识别
Jun 07 Python
pytorch对可变长度序列的处理方法详解
Dec 08 Python
对Python3之方法的覆盖与super函数详解
Jun 26 Python
Python实现的ftp服务器功能详解【附源码下载】
Jun 26 Python
解决pycharm 远程调试 上传 helpers 卡住的问题
Jun 27 Python
解决python -m pip install --upgrade pip 升级不成功问题
Mar 05 Python
pandas中read_csv、rolling、expanding用法详解
Apr 21 Python
基于python实现操作git过程代码解析
Jul 27 Python
用Python爬取英雄联盟的皮肤详细示例
Dec 06 Python
python3.5的包存放的具体路径
Aug 16 #Python
python根据字典的键来删除元素的方法
Aug 16 #Python
python实现取余操作的简单实例
Aug 16 #Python
python属于哪种语言
Aug 16 #Python
python中sys模块是做什么用的
Aug 16 #Python
python3获取控制台输入的数据的具体实例
Aug 16 #Python
python在一个范围内取随机数的简单实例
Aug 16 #Python
You might like
使用Sphinx对索引进行搜索
2013/06/25 PHP
PHP编译安装中遇到的两个错误和解决方法
2014/08/20 PHP
浅谈thinkphp的实例化模型
2015/01/04 PHP
win10环境PHP 7 安装配置【教程】
2016/05/09 PHP
php metaphone()函数的定义和用法
2016/05/15 PHP
javascript模版引擎-tmpl的bug修复与性能优化分析
2011/10/23 Javascript
css结合js制作下拉菜单示例代码
2014/02/27 Javascript
使用Node.js实现HTTP 206内容分片的教程
2015/06/23 Javascript
js中实现字符串和数组的相互转化详解
2016/01/24 Javascript
获取阴历(农历)和当前日期的js代码
2016/02/15 Javascript
Js 获取、判断浏览器版本信息的简单方法
2016/08/08 Javascript
vue2的todolist入门小项目的详细解析
2017/05/11 Javascript
bootstrap轮播图示例代码分享
2017/05/17 Javascript
angular6.x中ngTemplateOutlet指令的使用示例
2018/08/09 Javascript
node省市区三级数据性能测评实例分析
2019/11/06 Javascript
Vue切换组件实现返回后不重置数据,保留历史设置操作
2020/07/21 Javascript
python正则匹配查询港澳通行证办理进度示例分享
2013/12/27 Python
Django Admin 实现外键过滤的方法
2017/09/29 Python
python实现requests发送/上传多个文件的示例
2018/06/04 Python
Python 类的特殊成员解析
2018/06/20 Python
解决Python pip 自动更新升级失败的问题
2020/02/21 Python
scrapy爬虫:scrapy.FormRequest中formdata参数详解
2020/04/30 Python
Python基于数列实现购物车程序过程详解
2020/06/09 Python
Flask-SocketIO服务端安装及使用代码示例
2020/11/26 Python
python 6种方法实现单例模式
2020/12/15 Python
用canvas做一个DVD待机动画的实现代码
2019/04/12 HTML / CSS
BIBLOO捷克:购买女装、男装、童装、鞋和配件
2017/01/27 全球购物
美国最受欢迎的度假目的地优惠套餐:BookVIP
2018/09/27 全球购物
应届大学生求职的自我评价
2013/11/17 职场文书
自荐信格式
2013/12/01 职场文书
教学个人的自我评价分享
2014/02/16 职场文书
职工小家建设活动方案
2014/08/25 职场文书
优秀教师自我评价范文
2014/09/27 职场文书
党员自评材料范文
2014/12/17 职场文书
python解决12306登录验证码的实现
2021/04/18 Python
Mysql表数据比较大情况下修改添加字段的方法实例
2022/06/28 MySQL