pyecharts在数据可视化中的应用详解


Posted in Python onJune 08, 2020

使用pyecharts进行数据可视化

安装 pip install pyecharts
也可以在pycharm软件里进行下载pyecharts库包。
下载成功后进行查询版本号

import pyecharts
print(pyecharts.__version__)

pyecharts的中文官网

可以查看pyecharts的中文官网介绍http://pyecharts.org/#/zh-cn/intro。

一般的使用方法

add()
该方法主要用于添加图表的数据和设置各种配置项。

show_config()
用于打印输出图表的所有配置项

render()
该方法默认将会在根目录下生成一个 render.html 的文件,支持 path 参数,设置文件保存位置,如 render(r"e:my_first_chart.html"),文件用浏览器打开。

注意*
默认的编码类型为 UTF-8,在 Python3 中是没什么问题的,Python3 对中文的支持好很多。但是在 Python2 中,编码的处理是个很头疼的问题,暂时没能找到完美的解决方法,目前只能通过文本编辑器自己进行二次编码,我用的是 Visual Studio Code,先通过 Gbk 编码重新打开,然后再用 UTF-8 重新保存,这样用浏览器打开的话就不会出现中文乱码问题了。

基本使用

  • chart_name = Type() 初始化具体类型图表。
  • add() 添加数据及配置项。
  • render() 生成 .html 文件。

用示例来解决实际问题

1.美国1995年-2009年邮费变化折线图、阶梯图;

数据如下:
年份 : [“1995”, “1996”, “1997”, “1998”, “1999”, “2000”,
“2001”, “2002”, “2003”, “2004”, “2005”, “2006”,
“2007”, “2008”, “2009”]
邮费: [0.32, 0.32, 0.32, 0.32, 0.33, 0.33, 0.34, 0.37, 0.37, 0.37, 0.37, 0.39, 0.41, 0.42, 0.44]
折线图 代码如下:

import pyecharts.options as opts
from pyecharts.charts import Line

year= ["1995", "1996", "1997", "1998", "1999", "2000",
   "2001", "2002", "2003", "2004", "2005", "2006",
   "2007", "2008", "2009"]
postage= [0.32, 0.32, 0.32, 0.32, 0.33, 0.33, 0.34, 0.37, 0.37, 0.37, 0.37, 0.39, 0.41, 0.42, 0.44]

(
 Line()
 .set_global_opts(
  tooltip_opts=opts.TooltipOpts(is_show=False),
  xaxis_opts=opts.AxisOpts(type_="category"),
  yaxis_opts=opts.AxisOpts(
   type_="value",
   axistick_opts=opts.AxisTickOpts(is_show=True),
   splitline_opts=opts.SplitLineOpts(is_show=True),
  ),
 )
 .add_xaxis(xaxis_data=year)
 .add_yaxis(
  series_name="",
  y_axis=postage,
  symbol="emptyCircle",
  is_symbol_show=True,
  label_opts=opts.LabelOpts(is_show=False),
 )
 .render("basic_line_chart.html")
)

会在同目录下生成一个basic_line_chart.html的网页,打开网页则会显示该代码的运行结果。(此不展示,与下同)

阶梯图 代码如下:

import pyecharts.options as opts
from pyecharts.charts import Line

year = ["1995", "1996", "1997", "1998", "1999", "2000",
   "2001", "2002", "2003", "2004", "2005", "2006",
   "2007", "2008", "2009"]
postage = [0.32, 0.32, 0.32, 0.32, 0.33, 0.33, 0.34, 0.37, 0.37, 0.37, 0.37, 0.39, 0.41, 0.42, 0.44]

c = (
 Line()
 .add_xaxis(xaxis_data=year)
 .add_yaxis("美国1995年-2009年邮费", y_axis=postage, is_step=True)
 .set_global_opts(title_opts=opts.TitleOpts(title="Line-阶梯图"))
 .render("line_step.html")
)

会在同目录下生成一个line_step.html的网页,打开网页则会显示该代码的运行结果:

pyecharts在数据可视化中的应用详解

2.2000年-2010年热狗大胃王比赛前三名成绩的堆叠柱形图、极坐标系-堆叠柱状图(南丁格尔玫瑰图);
数据文件:hot-dog-places.csv
hot-dog-places.csv内写着:

2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010
25,50,50.5,44.5,53.5,49,54,66,59,68,54
24,31,26,30.5,38,37,52,63,59,64.5,43
22,23.5,25.5,29.5,32,32,37,49,42,55,37

等数据将其保存为csv文件
堆叠柱形图 代码如下:

from pyecharts import options as opts
from pyecharts.charts import Bar
import csv

filename="hot-dog-places.csv"
data_x=[]
#打开文件循环读取数据
with open(filename) as f:
 reader = csv.reader(f)
 for data_row in reader:
  data_x.append(data_row)
x=data_x[0]			#读取数据列表集中第一行数据进行赋值
y1=data_x[1]
y2=data_x[2]
y3=data_x[3]

c = (
 Bar()
 .add_xaxis(x)
 .add_yaxis("第一名", y1, stack="stack1")
 .add_yaxis("第二名", y2, stack="stack1")
 .add_yaxis("第三名", y3, stack="stack1")#显示在同一条柱状图中,不带stack属性则会分为三条柱状图
 .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
 .set_global_opts(title_opts=opts.TitleOpts(title="Bar-堆叠柱形图"))
 .render("bar_stack0.html")
)

会在同目录下生成一个bar_stack0.html的网页,打开网页则会显示该代码的运行结果:

pyecharts在数据可视化中的应用详解

极坐标系-堆叠柱状图(南丁格尔玫瑰图) 代码如下:

from pyecharts import options as opts
from pyecharts.charts import Polar
import csv

filename="hot-dog-places.csv"
data_x=[]
#打开文件循环读取数据
with open(filename) as f:
 reader = csv.reader(f)
 for data_row in reader:
  data_x.append(data_row)
x=data_x[0]			#读取数据列表集中第一行数据进行赋值
y1=data_x[1]
y2=data_x[2]
y3=data_x[3]

c = (
 Polar()
 .add_schema(angleaxis_opts=opts.AngleAxisOpts(data=x, type_="category"))
 .add("A", y1, type_="bar", stack="stack0")
 .add("B", y2, type_="bar", stack="stack0")
 .add("C", y3, type_="bar", stack="stack0")
 .set_global_opts(title_opts=opts.TitleOpts(title="极坐标系-堆叠柱状图(南丁格尔玫瑰图)"))
 .render("极坐标系-堆叠柱状图(南丁格尔玫瑰图).html")
)

打开网页则会显示该代码的运行结果:

pyecharts在数据可视化中的应用详解

极坐标系-堆叠柱状图 代码与上面相同,需要改的是c后面接的将其更改为如下代码:

d = (
 Polar()
 .add_schema(
  radiusaxis_opts=opts.RadiusAxisOpts(data=x, type_="category"),
  angleaxis_opts=opts.AngleAxisOpts(is_clockwise=True, max_=200),
 )
 .add("A", y1, type_="bar", stack="stack1")
 .add("B", y2, type_="bar", stack="stack1")
 .add("C", y3, type_="bar", stack="stack1")
 .set_global_opts(title_opts=opts.TitleOpts(title="极坐标系-堆叠柱状图"))
 .set_series_opts(label_opts=opts.LabelOpts(is_show=True))
 .render("极坐标系-堆叠柱状图.html")
)

打开网页则会显示该代码的运行结果:

pyecharts在数据可视化中的应用详解

3.某网站用户感兴趣的领域的投票结果绘制饼图、环形图;
数据文件:vote_result.csv
vote_result.csv内写着:

感兴趣的领域,票数
金融,172
医疗保健,136
市场业,135
零售业,101
制造业,80
司法,68
工程与科学,50
保险业,29
其他,41

饼图 代码如下:

from pyecharts import options as opts
from pyecharts.charts import Pie
import csv

filename="vote_result.csv"
data_x=[]
#打开文件循环读取数据
with open(filename,'r', encoding='UTF-8') as f:
 reader = csv.reader(f)
 for data_row in reader:
  data_x.append(data_row)
b=[]
c=[]
for index,values in enumerate(data_x):
 if(index>0):
  b.append(values[0])
  c.append(values[1])

x=data_x[0]			#读取数据列表集中第一行数据进行赋值

d = (
 Pie()
 .add(
  "",
  [list(z) for z in zip(b, c)],
  center=["35%", "50%"],
 )
 .set_global_opts(
  title_opts=opts.TitleOpts(title="投票结果饼图"),
  legend_opts=opts.LegendOpts(pos_left="15%"),
 )
 .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
 .render("pie_position.html")
)

打开网页则会显示该代码的运行结果:

pyecharts在数据可视化中的应用详解

环形图 代码如下:

from pyecharts import options as opts
from pyecharts.charts import Pie
import csv

filename="vote_result.csv"
data_x=[]
#打开文件循环读取数据
with open(filename,'r', encoding='UTF-8') as f:
 reader = csv.reader(f)
 for data_row in reader:
  data_x.append(data_row)
b=[]
c=[]
for index,values in enumerate(data_x):
 if(index>0):
  b.append(values[0])
  c.append(values[1])

d = (
 Pie()
 .add(
  "",
  [list(z) for z in zip(b, c)],
  radius=["40%", "75%"],
 )
 .set_global_opts(
  title_opts=opts.TitleOpts(title="环形图"),
  legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_left="2%"),
 )
 .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
 .render("投票结果+环形图.html")
)

打开网页则会显示该代码的运行结果:

pyecharts在数据可视化中的应用详解

4.奥巴马的政治举措民意调查结果的堆叠柱形图;
数据文件:approval_rate.csv
approval_rate.csv内写着:

政治举措,支持,反对,不发表意见
种族问题,52,38,10
教育,49,40,11
恐怖活动,48,45,7
能源政策,47,42,11
外交事务,44,48,8
环境,43,51,6
宗教政策,41,53,6
税收,41,54,5
医疗保健政策,40,57,3
经济,38,59,3
就业政策,36,57,7
贸易政策,31,64,5
外来移民,29,62,9

堆叠柱形图 代码如下:

from pyecharts import options as opts
from pyecharts.charts import Bar
import csv

filename="approval_rate.csv"
data_x=[]
#打开文件循环读取数据
with open(filename,'r', encoding='UTF-8') as f:
 reader = csv.reader(f)
 for data_row in reader:
  data_x.append(data_row)
x=[]			#读取数据列表集中第一行数据进行赋值
b=[]
c=[]
d=[]
e=[]
for index,values in enumerate(data_x):
 if(index>0):
  b.append(values[0])
  c.append(values[1])
  d.append(values[2])
  e.append(values[3])
 elif(index==0):
  x.append(values)
  
print(b)
c = (
 Bar()
 .add_xaxis(b)
 .add_yaxis(x[0][1], c, stack="stack1")
 .add_yaxis(x[0][2], d, stack="stack1")
 .add_yaxis(x[0][3], e, stack="stack1")#显示在同一条柱状图中,不带stack属性则会分为三条柱状图
 .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
 .set_global_opts(title_opts=opts.TitleOpts(title="Bar-堆叠柱形图"))
 .render("政治举措民意调查结果.html")
)

打开网页则会显示该代码的运行结果:

pyecharts在数据可视化中的应用详解

到此这篇关于pyecharts在数据可视化中的应用详解的文章就介绍到这了,更多相关pyecharts 数据可视化内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python装饰器实现几类验证功能做法实例
May 18 Python
Python中利用xpath解析HTML的方法
May 14 Python
终端命令查看TensorFlow版本号及路径的方法
Jun 13 Python
python实现雨滴下落到地面效果
Jun 21 Python
flask框架视图函数用法示例
Jul 19 Python
Django框架视图函数设计示例
Jul 29 Python
Python hashlib模块加密过程解析
Nov 05 Python
Python 依赖库太多了该如何管理
Nov 08 Python
python中p-value的实现方式
Dec 16 Python
Python3加密解密库Crypto的RSA加解密和签名/验签实现方法实例
Feb 11 Python
Tensorflow 模型转换 .pb convert to .lite实例
Feb 12 Python
使用Python获取字典键对应值的方法
Apr 26 Python
python numpy实现rolling滚动案例
Jun 08 #Python
Python如何向SQLServer存储二进制图片
Jun 08 #Python
python求numpy中array按列非零元素的平均值案例
Jun 08 #Python
Python过滤掉numpy.array中非nan数据实例
Jun 08 #Python
使用Python FastAPI构建Web服务的实现
Jun 08 #Python
python爬虫把url链接编码成gbk2312格式过程解析
Jun 08 #Python
给ubuntu18安装python3.7的详细教程
Jun 08 #Python
You might like
php 数组的合并、拆分、区别取值函数集
2010/02/15 PHP
开源php中文分词系统SCWS安装和使用实例
2014/04/11 PHP
PHP高手需要要掌握的知识点
2014/08/21 PHP
WordPress的主题编写中获取头部模板和底部模板
2015/12/28 PHP
PHP调用接口API封装的例子
2019/10/11 PHP
Laravel 微信小程序后端实现用户登录的示例代码
2019/11/26 PHP
浅谈Javascript嵌套函数及闭包
2010/11/09 Javascript
javascrip客户端验证文件大小及文件类型并重置上传
2011/01/12 Javascript
jQuery建立一个按字母顺序排列的友好页面索引(兼容IE6/7/8)
2013/02/26 Javascript
jQuery实现的Div窗口震动效果实例
2015/08/07 Javascript
JavaScript引用类型和基本类型详解
2016/01/06 Javascript
jQuery EasyUI常用数据验证汇总
2016/09/18 Javascript
ajax 提交数据到后台jsp页面及页面跳转问题
2017/01/19 Javascript
javascript计算渐变颜色的实例
2017/09/22 Javascript
微信小程序网络请求封装示例
2018/07/24 Javascript
Vue2 监听属性改变watch的实例代码
2018/08/27 Javascript
Vue.js 实现数据展示全部和收起功能
2018/09/05 Javascript
JS实现根据详细地址获取经纬度功能示例
2019/04/16 Javascript
vue实现前台列表数据过滤搜索、分页效果
2019/05/28 Javascript
ionic4+angular7+cordova上传图片功能的实例代码
2019/06/19 Javascript
[05:56]第十六期——新进3大C之小兔基
2014/06/24 DOTA
Python文件与文件夹常见基本操作总结
2016/09/19 Python
python3库numpy数组属性的查看方法
2018/04/17 Python
Python实现常见的回文字符串算法
2018/11/14 Python
django基于cors解决跨域请求问题详解
2019/08/06 Python
Pytorch 实现权重初始化
2019/12/31 Python
Python 识别12306图片验证码物品的实现示例
2020/01/20 Python
试解释COMMIT操作和ROLLBACK操作的语义
2014/07/25 面试题
EJB需直接实现它的业务接口或Home接口吗,请简述理由
2016/11/23 面试题
市场营销专业个人自荐信格式
2013/09/21 职场文书
艺术设计专业个人求职信
2014/04/10 职场文书
文明家庭先进事迹材料
2014/05/14 职场文书
支行行长竞聘演讲稿
2014/05/15 职场文书
离婚协议书标准格式
2014/10/04 职场文书
2015年度团总支工作总结
2015/04/23 职场文书
休假证明书
2015/06/24 职场文书