Keras loss函数剖析


Posted in Python onJuly 06, 2020

我就废话不多说了,大家还是直接看代码吧~

'''
Created on 2018-4-16
'''
def compile(
self,
optimizer, #优化器
loss, #损失函数,可以为已经定义好的loss函数名称,也可以为自己写的loss函数
metrics=None, #
sample_weight_mode=None, #如果你需要按时间步为样本赋权(2D权矩阵),将该值设为“temporal”。默认为“None”,代表按样本赋权(1D权),和fit中sample_weight在赋值样本权重中配合使用
weighted_metrics=None, 
target_tensors=None,
**kwargs #这里的设定的参数可以和后端交互。
)

实质调用的是Keras\engine\training.py 中的class Model中的def compile
一般使用model.compile(loss='categorical_crossentropy',optimizer='sgd',metrics=['accuracy'])

# keras所有定义好的损失函数loss:
# keras\losses.py
# 有些loss函数可以使用简称:
# mse = MSE = mean_squared_error
# mae = MAE = mean_absolute_error
# mape = MAPE = mean_absolute_percentage_error
# msle = MSLE = mean_squared_logarithmic_error
# kld = KLD = kullback_leibler_divergence
# cosine = cosine_proximity
# 使用到的数学方法:
# mean:求均值
# sum:求和
# square:平方
# abs:绝对值
# clip:[裁剪替换](https://blog.csdn.net/qq1483661204/article/details)
# epsilon:1e-7
# log:以e为底
# maximum(x,y):x与 y逐位比较取其大者
# reduce_sum(x,axis):沿着某个维度求和
# l2_normalize:l2正则化
# softplus:softplus函数
# 
# import cntk as C
# 1.mean_squared_error:
#  return K.mean(K.square(y_pred - y_true), axis=-1) 
# 2.mean_absolute_error:
#  return K.mean(K.abs(y_pred - y_true), axis=-1)
# 3.mean_absolute_percentage_error:
#  diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true),K.epsilon(),None))
#  return 100. * K.mean(diff, axis=-1)
# 4.mean_squared_logarithmic_error:
#  first_log = K.log(K.clip(y_pred, K.epsilon(), None) + 1.)
#  second_log = K.log(K.clip(y_true, K.epsilon(), None) + 1.)
#  return K.mean(K.square(first_log - second_log), axis=-1)
# 5.squared_hinge:
#  return K.mean(K.square(K.maximum(1. - y_true * y_pred, 0.)), axis=-1)
# 6.hinge(SVM损失函数):
#  return K.mean(K.maximum(1. - y_true * y_pred, 0.), axis=-1)
# 7.categorical_hinge:
#  pos = K.sum(y_true * y_pred, axis=-1)
#  neg = K.max((1. - y_true) * y_pred, axis=-1)
#  return K.maximum(0., neg - pos + 1.)
# 8.logcosh:
#  def _logcosh(x):
#   return x + K.softplus(-2. * x) - K.log(2.)
#  return K.mean(_logcosh(y_pred - y_true), axis=-1)
# 9.categorical_crossentropy:
#  output /= C.reduce_sum(output, axis=-1)
#  output = C.clip(output, epsilon(), 1.0 - epsilon())
#  return -sum(target * C.log(output), axis=-1)
# 10.sparse_categorical_crossentropy:
#  target = C.one_hot(target, output.shape[-1])
#  target = C.reshape(target, output.shape)
#  return categorical_crossentropy(target, output, from_logits)
# 11.binary_crossentropy:
#  return K.mean(K.binary_crossentropy(y_true, y_pred), axis=-1)
# 12.kullback_leibler_divergence:
#  y_true = K.clip(y_true, K.epsilon(), 1)
#  y_pred = K.clip(y_pred, K.epsilon(), 1)
#  return K.sum(y_true * K.log(y_true / y_pred), axis=-1)
# 13.poisson:
#  return K.mean(y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1)
# 14.cosine_proximity:
#  y_true = K.l2_normalize(y_true, axis=-1)
#  y_pred = K.l2_normalize(y_pred, axis=-1)
#  return -K.sum(y_true * y_pred, axis=-1)

补充知识:一文总结Keras的loss函数和metrics函数

Loss函数

定义:

keras.losses.mean_squared_error(y_true, y_pred)

用法很简单,就是计算均方误差平均值,例如

loss_fn = keras.losses.mean_squared_error
a1 = tf.constant([1,1,1,1])
a2 = tf.constant([2,2,2,2])
loss_fn(a1,a2)
<tf.Tensor: id=718367, shape=(), dtype=int32, numpy=1>

Metrics函数

Metrics函数也用于计算误差,但是功能比Loss函数要复杂。

定义

tf.keras.metrics.Mean(
  name='mean', dtype=None
)

这个定义过于简单,举例说明

mean_loss([1, 3, 5, 7])
mean_loss([1, 3, 5, 7])
mean_loss([1, 1, 1, 1])
mean_loss([2,2])

输出结果

<tf.Tensor: id=718929, shape=(), dtype=float32, numpy=2.857143>

这个结果等价于

np.mean([1, 3, 5, 7, 1, 3, 5, 7, 1, 1, 1, 1, 2, 2])

这是因为Metrics函数是状态函数,在神经网络训练过程中会持续不断地更新状态,是有记忆的。因为Metrics函数还带有下面几个Methods

reset_states()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.

result()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables

update_state(
  values, sample_weight=None
)
Accumulates statistics for computing the reduction metric.

另外注意,Loss函数和Metrics函数的调用形式,

loss_fn = keras.losses.mean_squared_error mean_loss = keras.metrics.Mean()

mean_loss(1)等价于keras.metrics.Mean()(1),而不是keras.metrics.Mean(1),这个从keras.metrics.Mean函数的定义可以看出。

但是必须先令生成一个实例mean_loss=keras.metrics.Mean(),而不能直接使用keras.metrics.Mean()本身。

以上这篇Keras loss函数剖析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python 数据结构之队列的实现
Jan 22 Python
python中安装模块包版本冲突问题的解决
May 02 Python
Python多线程threading和multiprocessing模块实例解析
Jan 29 Python
python操作redis方法总结
Jun 06 Python
用pycharm开发django项目示例代码
Jun 13 Python
Pandas透视表(pivot_table)详解
Jul 22 Python
python自动发微信监控报警
Sep 06 Python
Python爬取知乎图片代码实现解析
Sep 17 Python
Python实现哲学家就餐问题实例代码
Nov 09 Python
python 发送邮件的示例代码(Python2/3都可以直接使用)
Dec 03 Python
如何用python批量调整视频声音
Dec 22 Python
Python实现对word文档添加密码去除密码的示例代码
Dec 29 Python
keras 模型参数,模型保存,中间结果输出操作
Jul 06 #Python
Python自省及反射原理实例详解
Jul 06 #Python
如何通过命令行进入python
Jul 06 #Python
解决TensorFlow调用Keras库函数存在的问题
Jul 06 #Python
python else语句在循环中的运用详解
Jul 06 #Python
Keras模型转成tensorflow的.pb操作
Jul 06 #Python
python如何进入交互模式
Jul 06 #Python
You might like
phpmyadmin中配置文件现在需要绝密的短语密码的解决方法
2007/02/11 PHP
php中限制ip段访问、禁止ip提交表单的代码分享
2014/08/22 PHP
PHP批量修改文件名称的方法分析
2017/02/27 PHP
php上传excel表格并获取数据
2017/04/27 PHP
javascript options属性集合操作代码
2009/12/28 Javascript
JS多物体 任意值 链式 缓冲运动
2012/08/10 Javascript
javascript引用类型指针的工作方式
2015/04/13 Javascript
JS特效实现图片自动播放并可控的效果
2015/07/31 Javascript
js+canvas简单绘制圆圈的方法
2016/01/28 Javascript
jQuery提示插件qTip2用法分析(支持ajax及多种样式)
2016/06/08 Javascript
svg动画之动态描边效果
2017/02/22 Javascript
微信小程序中的swiper组件详解
2017/04/14 Javascript
Node.js中多进程模块Cluster的介绍与使用
2017/05/27 Javascript
input框中自动展示当前日期yyyy/mm/dd的实现方法
2017/07/06 Javascript
JS图片轮播与索引变色功能实例详解
2017/07/06 Javascript
jQuery表单元素过滤选择器用法实例分析
2019/02/20 jQuery
9102了,你还不会移动端真机调试吗
2019/03/25 Javascript
详解jquery和vue对比
2019/04/16 jQuery
使用Vue实现移动端左滑删除效果附源码
2019/05/16 Javascript
python通过socket查询whois的方法
2015/07/18 Python
浅谈python jieba分词模块的基本用法
2017/11/09 Python
浅谈Django自定义模板标签template_tags的用处
2017/12/20 Python
python实现堆和索引堆的代码示例
2018/03/19 Python
python获取文件真实链接的方法,针对于302返回码
2018/05/14 Python
python模拟菜刀反弹shell绕过限制【推荐】
2019/06/25 Python
keras 权重保存和权重载入方式
2020/05/21 Python
HTML5事件方法全部汇总
2016/05/12 HTML / CSS
逻辑链路控制协议
2016/10/01 面试题
一些Solaris面试题
2015/12/22 面试题
四种会话跟踪技术
2015/05/20 面试题
财务主管自我鉴定
2014/01/17 职场文书
小学运动会表扬稿
2014/01/19 职场文书
模具专业毕业推荐信
2014/03/08 职场文书
会员卡清退活动总结
2014/08/27 职场文书
幼儿学前班评语
2014/12/29 职场文书
听证通知书
2015/04/24 职场文书