Keras loss函数剖析


Posted in Python onJuly 06, 2020

我就废话不多说了,大家还是直接看代码吧~

'''
Created on 2018-4-16
'''
def compile(
self,
optimizer, #优化器
loss, #损失函数,可以为已经定义好的loss函数名称,也可以为自己写的loss函数
metrics=None, #
sample_weight_mode=None, #如果你需要按时间步为样本赋权(2D权矩阵),将该值设为“temporal”。默认为“None”,代表按样本赋权(1D权),和fit中sample_weight在赋值样本权重中配合使用
weighted_metrics=None, 
target_tensors=None,
**kwargs #这里的设定的参数可以和后端交互。
)

实质调用的是Keras\engine\training.py 中的class Model中的def compile
一般使用model.compile(loss='categorical_crossentropy',optimizer='sgd',metrics=['accuracy'])

# keras所有定义好的损失函数loss:
# keras\losses.py
# 有些loss函数可以使用简称:
# mse = MSE = mean_squared_error
# mae = MAE = mean_absolute_error
# mape = MAPE = mean_absolute_percentage_error
# msle = MSLE = mean_squared_logarithmic_error
# kld = KLD = kullback_leibler_divergence
# cosine = cosine_proximity
# 使用到的数学方法:
# mean:求均值
# sum:求和
# square:平方
# abs:绝对值
# clip:[裁剪替换](https://blog.csdn.net/qq1483661204/article/details)
# epsilon:1e-7
# log:以e为底
# maximum(x,y):x与 y逐位比较取其大者
# reduce_sum(x,axis):沿着某个维度求和
# l2_normalize:l2正则化
# softplus:softplus函数
# 
# import cntk as C
# 1.mean_squared_error:
#  return K.mean(K.square(y_pred - y_true), axis=-1) 
# 2.mean_absolute_error:
#  return K.mean(K.abs(y_pred - y_true), axis=-1)
# 3.mean_absolute_percentage_error:
#  diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true),K.epsilon(),None))
#  return 100. * K.mean(diff, axis=-1)
# 4.mean_squared_logarithmic_error:
#  first_log = K.log(K.clip(y_pred, K.epsilon(), None) + 1.)
#  second_log = K.log(K.clip(y_true, K.epsilon(), None) + 1.)
#  return K.mean(K.square(first_log - second_log), axis=-1)
# 5.squared_hinge:
#  return K.mean(K.square(K.maximum(1. - y_true * y_pred, 0.)), axis=-1)
# 6.hinge(SVM损失函数):
#  return K.mean(K.maximum(1. - y_true * y_pred, 0.), axis=-1)
# 7.categorical_hinge:
#  pos = K.sum(y_true * y_pred, axis=-1)
#  neg = K.max((1. - y_true) * y_pred, axis=-1)
#  return K.maximum(0., neg - pos + 1.)
# 8.logcosh:
#  def _logcosh(x):
#   return x + K.softplus(-2. * x) - K.log(2.)
#  return K.mean(_logcosh(y_pred - y_true), axis=-1)
# 9.categorical_crossentropy:
#  output /= C.reduce_sum(output, axis=-1)
#  output = C.clip(output, epsilon(), 1.0 - epsilon())
#  return -sum(target * C.log(output), axis=-1)
# 10.sparse_categorical_crossentropy:
#  target = C.one_hot(target, output.shape[-1])
#  target = C.reshape(target, output.shape)
#  return categorical_crossentropy(target, output, from_logits)
# 11.binary_crossentropy:
#  return K.mean(K.binary_crossentropy(y_true, y_pred), axis=-1)
# 12.kullback_leibler_divergence:
#  y_true = K.clip(y_true, K.epsilon(), 1)
#  y_pred = K.clip(y_pred, K.epsilon(), 1)
#  return K.sum(y_true * K.log(y_true / y_pred), axis=-1)
# 13.poisson:
#  return K.mean(y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1)
# 14.cosine_proximity:
#  y_true = K.l2_normalize(y_true, axis=-1)
#  y_pred = K.l2_normalize(y_pred, axis=-1)
#  return -K.sum(y_true * y_pred, axis=-1)

补充知识:一文总结Keras的loss函数和metrics函数

Loss函数

定义:

keras.losses.mean_squared_error(y_true, y_pred)

用法很简单,就是计算均方误差平均值,例如

loss_fn = keras.losses.mean_squared_error
a1 = tf.constant([1,1,1,1])
a2 = tf.constant([2,2,2,2])
loss_fn(a1,a2)
<tf.Tensor: id=718367, shape=(), dtype=int32, numpy=1>

Metrics函数

Metrics函数也用于计算误差,但是功能比Loss函数要复杂。

定义

tf.keras.metrics.Mean(
  name='mean', dtype=None
)

这个定义过于简单,举例说明

mean_loss([1, 3, 5, 7])
mean_loss([1, 3, 5, 7])
mean_loss([1, 1, 1, 1])
mean_loss([2,2])

输出结果

<tf.Tensor: id=718929, shape=(), dtype=float32, numpy=2.857143>

这个结果等价于

np.mean([1, 3, 5, 7, 1, 3, 5, 7, 1, 1, 1, 1, 2, 2])

这是因为Metrics函数是状态函数,在神经网络训练过程中会持续不断地更新状态,是有记忆的。因为Metrics函数还带有下面几个Methods

reset_states()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.

result()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables

update_state(
  values, sample_weight=None
)
Accumulates statistics for computing the reduction metric.

另外注意,Loss函数和Metrics函数的调用形式,

loss_fn = keras.losses.mean_squared_error mean_loss = keras.metrics.Mean()

mean_loss(1)等价于keras.metrics.Mean()(1),而不是keras.metrics.Mean(1),这个从keras.metrics.Mean函数的定义可以看出。

但是必须先令生成一个实例mean_loss=keras.metrics.Mean(),而不能直接使用keras.metrics.Mean()本身。

以上这篇Keras loss函数剖析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现基本数据结构中栈的操作示例
Dec 04 Python
pandas的object对象转时间对象的方法
Apr 11 Python
我喜欢你 抖音表白程序python版
Apr 07 Python
Python+threading模块对单个接口进行并发测试
Jun 25 Python
python画图--输出指定像素点的颜色值方法
Jul 03 Python
Python函数式编程实例详解
Jan 17 Python
python如何基于redis实现ip代理池
Jan 17 Python
有关Tensorflow梯度下降常用的优化方法分享
Feb 04 Python
Python+redis通过限流保护高并发系统
Apr 15 Python
解决tensorflow读取本地MNITS_data失败的原因
Jun 22 Python
Python页面加载的等待方式总结
Feb 28 Python
教你用python实现12306余票查询
Jun 30 Python
keras 模型参数,模型保存,中间结果输出操作
Jul 06 #Python
Python自省及反射原理实例详解
Jul 06 #Python
如何通过命令行进入python
Jul 06 #Python
解决TensorFlow调用Keras库函数存在的问题
Jul 06 #Python
python else语句在循环中的运用详解
Jul 06 #Python
Keras模型转成tensorflow的.pb操作
Jul 06 #Python
python如何进入交互模式
Jul 06 #Python
You might like
Breeze 文章管理系统 v1.0.0正式发布
2006/12/14 PHP
PHP 第二节 数据类型之数值型
2012/04/28 PHP
非常精妙的PHP递归调用与静态变量使用
2012/12/16 PHP
PHP实现通过中文字符比率来判断垃圾评论的方法
2014/10/20 PHP
详解PHP中instanceof关键字及instanceof关键字有什么作用
2015/11/05 PHP
php处理抢购类功能的高并发请求
2018/02/08 PHP
jquery实现点击TreeView文本父节点展开/折叠子节点
2013/01/10 Javascript
JavaScript的strict模式与with关键字介绍
2014/02/08 Javascript
浏览器窗口大小变化时使用resize事件对框架不起作用的解决方法
2014/05/11 Javascript
nodejs 整合kindEditor实现图片上传
2015/02/03 NodeJs
BootStrap实用代码片段之一
2016/03/22 Javascript
详细谈谈AngularJS的子级作用域问题
2016/09/05 Javascript
Bootstrap字体图标无法正常显示的解决方法
2016/10/08 Javascript
javascript 数组去重复(在线去重工具)
2016/12/17 Javascript
Bootstrap中datetimepicker使用小结
2016/12/28 Javascript
bootstrap导航栏、下拉菜单、表单的简单应用实例解析
2017/01/06 Javascript
javascript获取指定区间范围随机数的方法
2017/09/08 Javascript
js中的 || 与 &amp;&amp; 运算符详解
2018/05/24 Javascript
React中嵌套组件与被嵌套组件的通信过程
2018/07/11 Javascript
快速解决vue动态绑定多个class的官方实例语法无效的问题
2018/09/05 Javascript
layDate日期控件使用方法详解
2018/11/15 Javascript
Python信息抽取之乱码解决办法
2017/06/29 Python
200 行python 代码实现 2048 游戏
2018/01/12 Python
python matplotlib 在指定的两个点之间连线方法
2018/05/25 Python
selenium+python设置爬虫代理IP的方法
2018/11/29 Python
用Python中的turtle模块画图两只小羊方法
2019/04/09 Python
python多线程下信号处理程序示例
2019/05/31 Python
Python Pandas中根据列的值选取多行数据
2019/07/08 Python
django formset实现数据表的批量操作的示例代码
2019/12/06 Python
Python hashlib常见摘要算法详解
2020/01/13 Python
TensorFlow命名空间和TensorBoard图节点实例
2020/01/23 Python
德国鞋子网上商店:Omoda.de
2017/03/31 全球购物
自动化职业生涯规划书范文
2014/01/03 职场文书
上课说话检讨书大全
2014/01/22 职场文书
师德模范事迹材料
2014/06/03 职场文书
班级口号大全
2014/06/09 职场文书