python基于三阶贝塞尔曲线的数据平滑算法


Posted in Python onDecember 27, 2019

前言

很多文章在谈及曲线平滑的时候,习惯使用拟合的概念,我认为这是不恰当的。平滑后的曲线,一定经过原始的数据点,而拟合曲线,则不一定要经过原始数据点。

一般而言,需要平滑的数据分为两种:时间序列的单值数据、时间序列的二维数据。对于前者,并非一定要用贝塞尔算法,仅用样条插值就可以轻松实现平滑;而对于后者,不管是 numpy 还是 scipy 提供的那些插值算法,就都不适用了。

本文基于三阶贝塞尔曲线,实现了时间序列的单值数据和时间序列的二维数据的平滑算法,可满足大多数的平滑需求。

贝塞尔曲线

关于贝塞尔曲线的数学原理,这里就不讨论了,直接贴出结论:

一阶贝塞尔曲线

python基于三阶贝塞尔曲线的数据平滑算法

python基于三阶贝塞尔曲线的数据平滑算法

二阶贝塞尔曲线

python基于三阶贝塞尔曲线的数据平滑算法

python基于三阶贝塞尔曲线的数据平滑算法

三阶贝塞尔曲线

python基于三阶贝塞尔曲线的数据平滑算法

python基于三阶贝塞尔曲线的数据平滑算法

算法描述

如果我们把三阶贝塞尔曲线的 P0 和 P3 视为原始数据,只要找到 P1 和 P2 两个点(我们称其为控制点),就可以根据三阶贝塞尔曲线公式,计算出 P0 和 P3 之间平滑曲线上的任意点。

python基于三阶贝塞尔曲线的数据平滑算法

现在,平滑问题变成了如何计算两个原始数据点之间的控制点的问题。步骤如下:

第1步:绿色直线连接相邻的原始数据点,计算出个线段的中点,红色直线连接相邻的中点

python基于三阶贝塞尔曲线的数据平滑算法

第2步:根据相邻两条绿色直线长度之比,分割其中点之间红色连线,标记分割点

python基于三阶贝塞尔曲线的数据平滑算法

第3步:平移红色连线,使其分割点与相对的原始数据点重合

python基于三阶贝塞尔曲线的数据平滑算法

第4步:调整平移后红色连线的端点与原始数据点的距离,通常缩减40%-80%

python基于三阶贝塞尔曲线的数据平滑算法

算法实现

# -*- coding: utf-8 -*-

import numpy as np

def bezier_curve(p0, p1, p2, p3, inserted):
 """
 三阶贝塞尔曲线
 
 p0, p1, p2, p3 - 点坐标,tuple、list或numpy.ndarray类型
 inserted  - p0和p3之间插值的数量
 """
 
 assert isinstance(p0, (tuple, list, np.ndarray)), u'点坐标不是期望的元组、列表或numpy数组类型'
 assert isinstance(p0, (tuple, list, np.ndarray)), u'点坐标不是期望的元组、列表或numpy数组类型'
 assert isinstance(p0, (tuple, list, np.ndarray)), u'点坐标不是期望的元组、列表或numpy数组类型'
 assert isinstance(p0, (tuple, list, np.ndarray)), u'点坐标不是期望的元组、列表或numpy数组类型'
 
 if isinstance(p0, (tuple, list)):
  p0 = np.array(p0)
 if isinstance(p1, (tuple, list)):
  p1 = np.array(p1)
 if isinstance(p2, (tuple, list)):
  p2 = np.array(p2)
 if isinstance(p3, (tuple, list)):
  p3 = np.array(p3)
 
 points = list()
 for t in np.linspace(0, 1, inserted+2):
  points.append(p0*np.power((1-t),3) + 3*p1*t*np.power((1-t),2) + 3*p2*(1-t)*np.power(t,2) + p3*np.power(t,3))
 
 return np.vstack(points)


def smoothing_base_bezier(date_x, date_y, k=0.5, inserted=10, closed=False):
 """
 基于三阶贝塞尔曲线的数据平滑算法
 
 date_x  - x维度数据集,list或numpy.ndarray类型
 date_y  - y维度数据集,list或numpy.ndarray类型
 k   - 调整平滑曲线形状的因子,取值一般在0.2~0.6之间。默认值为0.5
 inserted - 两个原始数据点之间插值的数量。默认值为10
 closed  - 曲线是否封闭,如是,则首尾相连。默认曲线不封闭
 """
 
 assert isinstance(date_x, (list, np.ndarray)), u'x数据集不是期望的列表或numpy数组类型'
 assert isinstance(date_y, (list, np.ndarray)), u'y数据集不是期望的列表或numpy数组类型'
 
 if isinstance(date_x, list) and isinstance(date_y, list):
  assert len(date_x)==len(date_y), u'x数据集和y数据集长度不匹配'
  date_x = np.array(date_x)
  date_y = np.array(date_y)
 elif isinstance(date_x, np.ndarray) and isinstance(date_y, np.ndarray):
  assert date_x.shape==date_y.shape, u'x数据集和y数据集长度不匹配'
 else:
  raise Exception(u'x数据集或y数据集类型错误')
 
 # 第1步:生成原始数据折线中点集
 mid_points = list()
 for i in range(1, date_x.shape[0]):
  mid_points.append({
   'start': (date_x[i-1], date_y[i-1]),
   'end':  (date_x[i], date_y[i]),
   'mid':  ((date_x[i]+date_x[i-1])/2.0, (date_y[i]+date_y[i-1])/2.0)
  })
 
 if closed:
  mid_points.append({
   'start': (date_x[-1], date_y[-1]),
   'end':  (date_x[0], date_y[0]),
   'mid':  ((date_x[0]+date_x[-1])/2.0, (date_y[0]+date_y[-1])/2.0)
  })
 
 # 第2步:找出中点连线及其分割点
 split_points = list()
 for i in range(len(mid_points)):
  if i < (len(mid_points)-1):
   j = i+1
  elif closed:
   j = 0
  else:
   continue
  
  x00, y00 = mid_points[i]['start']
  x01, y01 = mid_points[i]['end']
  x10, y10 = mid_points[j]['start']
  x11, y11 = mid_points[j]['end']
  d0 = np.sqrt(np.power((x00-x01), 2) + np.power((y00-y01), 2))
  d1 = np.sqrt(np.power((x10-x11), 2) + np.power((y10-y11), 2))
  k_split = 1.0*d0/(d0+d1)
  
  mx0, my0 = mid_points[i]['mid']
  mx1, my1 = mid_points[j]['mid']
  
  split_points.append({
   'start': (mx0, my0),
   'end':  (mx1, my1),
   'split': (mx0+(mx1-mx0)*k_split, my0+(my1-my0)*k_split)
  })
 
 # 第3步:平移中点连线,调整端点,生成控制点
 crt_points = list()
 for i in range(len(split_points)):
  vx, vy = mid_points[i]['end'] # 当前顶点的坐标
  dx = vx - split_points[i]['split'][0] # 平移线段x偏移量
  dy = vy - split_points[i]['split'][1] # 平移线段y偏移量
  
  sx, sy = split_points[i]['start'][0]+dx, split_points[i]['start'][1]+dy # 平移后线段起点坐标
  ex, ey = split_points[i]['end'][0]+dx, split_points[i]['end'][1]+dy # 平移后线段终点坐标
  
  cp0 = sx+(vx-sx)*k, sy+(vy-sy)*k # 控制点坐标
  cp1 = ex+(vx-ex)*k, ey+(vy-ey)*k # 控制点坐标
  
  if crt_points:
   crt_points[-1].insert(2, cp0)
  else:
   crt_points.append([mid_points[0]['start'], cp0, mid_points[0]['end']])
  
  if closed:
   if i < (len(mid_points)-1):
    crt_points.append([mid_points[i+1]['start'], cp1, mid_points[i+1]['end']])
   else:
    crt_points[0].insert(1, cp1)
  else:
   if i < (len(mid_points)-2):
    crt_points.append([mid_points[i+1]['start'], cp1, mid_points[i+1]['end']])
   else:
    crt_points.append([mid_points[i+1]['start'], cp1, mid_points[i+1]['end'], mid_points[i+1]['end']])
    crt_points[0].insert(1, mid_points[0]['start'])
 
 # 第4步:应用贝塞尔曲线方程插值
 out = list()
 for item in crt_points:
  group = bezier_curve(item[0], item[1], item[2], item[3], inserted)
  out.append(group[:-1])
 
 out.append(group[-1:])
 out = np.vstack(out)
 
 return out.T[0], out.T[1]


if __name__ == '__main__':
 import matplotlib.pyplot as plt
 
 x = np.array([2,4,4,3,2])
 y = np.array([2,2,4,3,4])
	
	plt.plot(x, y, 'ro')
 x_curve, y_curve = smoothing_base_bezier(x, y, k=0.3, closed=True)
 plt.plot(x_curve, y_curve, label='$k=0.3$')
 x_curve, y_curve = smoothing_base_bezier(x, y, k=0.4, closed=True)
 plt.plot(x_curve, y_curve, label='$k=0.4$')
 x_curve, y_curve = smoothing_base_bezier(x, y, k=0.5, closed=True)
 plt.plot(x_curve, y_curve, label='$k=0.5$')
 x_curve, y_curve = smoothing_base_bezier(x, y, k=0.6, closed=True)
 plt.plot(x_curve, y_curve, label='$k=0.6$')
 plt.legend(loc='best')
 
 plt.show()

下图为平滑效果。左侧是封闭曲线,两个原始数据点之间插值数量为默认值10;右侧为同样数据不封闭的效果,k值默认0.5.

python基于三阶贝塞尔曲线的数据平滑算法

参考资料

算法参考了 Interpolation with Bezier Curves 这个网页,里面没有关于作者的任何信息,在此只能笼统地向国际友人表示感谢!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python的爬虫程序编写框架Scrapy入门学习教程
Jul 02 Python
Python爬虫中urllib库的进阶学习
Jan 05 Python
Python 删除整个文本中的空格,并实现按行显示
Jul 24 Python
用pycharm开发django项目示例代码
Oct 24 Python
PyQt5创建一个新窗口的实例
Jun 20 Python
Django接收自定义http header过程详解
Aug 23 Python
python 图像的离散傅立叶变换实例
Jan 02 Python
Scrapy模拟登录赶集网的实现代码
Jul 07 Python
python基本算法之实现归并排序(Merge sort)
Sep 01 Python
Django中ORM的基本使用教程
Dec 22 Python
聊聊Python pandas 中loc函数的使用,及跟iloc的区别说明
Mar 03 Python
pytorch 梯度NAN异常值的解决方案
Jun 05 Python
python3获取文件中url内容并下载代码实例
Dec 27 #Python
用python拟合等角螺线的实现示例
Dec 27 #Python
PyTorch 对应点相乘、矩阵相乘实例
Dec 27 #Python
pytorch中tensor.expand()和tensor.expand_as()函数详解
Dec 27 #Python
python装饰器相当于函数的调用方式
Dec 27 #Python
Python 实现数组相减示例
Dec 27 #Python
Pandas 解决dataframe的一列进行向下顺移问题
Dec 27 #Python
You might like
php去除HTML标签实例
2013/11/06 PHP
采用header定义为文件然后readfile下载(隐藏下载地址)
2014/01/31 PHP
搭建基于Docker的PHP开发环境的详细教程
2015/07/01 PHP
详解提高使用Java反射的效率方法
2019/04/29 PHP
PHP 加密 Password Hashing API基础知识点
2020/03/02 PHP
用js实现的仿sohu博客更换页面风格(简单版)
2007/03/22 Javascript
csdn 批量接受好友邀请
2009/02/19 Javascript
从阶乘函数对比Javascript和C#的异同
2012/05/31 Javascript
JavaScript:Div层拖动效果实例代码
2013/08/06 Javascript
如何用JS判断两个数字的大小
2016/07/21 Javascript
angularjs实现分页和搜索功能
2018/01/03 Javascript
浅谈webpack4 图片处理汇总
2018/09/12 Javascript
NodeJS模块与ES6模块系统语法及注意点详解
2019/01/04 NodeJs
js HTML DOM EventListener功能与用法实例分析
2020/04/27 Javascript
安装ElasticSearch搜索工具并配置Python驱动的方法
2015/12/22 Python
python实现按任意键继续执行程序
2016/12/30 Python
python中numpy基础学习及进行数组和矢量计算
2017/02/12 Python
不可错过的十本Python好书
2017/07/06 Python
Python标准模块--ContextManager上下文管理器的具体用法
2017/11/27 Python
python 实现判断ip连通性的方法总结
2018/04/22 Python
深度辨析Python的eval()与exec()的方法
2019/03/26 Python
详解程序意外中断自动重启shell脚本(以Python为例)
2019/07/26 Python
Python 函数list&amp;read&amp;seek详解
2019/08/28 Python
pytorch随机采样操作SubsetRandomSampler()
2020/07/07 Python
基于html5 DeviceOrientation 实现微信摇一摇功能
2015/09/25 HTML / CSS
美赞臣营养马来西亚旗舰店:Enfagrow马来西亚
2019/07/26 全球购物
给水排水工程专业毕业生推荐信
2013/10/28 职场文书
《鞋匠的儿子》教学反思
2014/03/02 职场文书
五好家庭事迹材料
2014/12/20 职场文书
2015年安全教育月活动总结
2015/03/26 职场文书
2015社区健康教育工作总结
2015/05/20 职场文书
2016年万圣节家长开放日活动总结
2016/04/05 职场文书
导游词之西递宏村
2019/12/10 职场文书
SQL SERVER实现连接与合并查询
2022/02/24 SQL Server
Java虚拟机内存结构及编码实战分享
2022/04/07 Java/Android
windows server 2012安装FTP并配置被动模式指定开放端口
2022/06/10 Servers