Tensorflow 多线程与多进程数据加载实例


Posted in Python onFebruary 05, 2020

在项目中遇到需要处理超级大量的数据集,无法载入内存的问题就不用说了,单线程分批读取和处理(虽然这个处理也只是特别简单的首尾相连的操作)也会使瓶颈出现在CPU性能上,所以研究了一下多线程和多进程的数据读取和预处理,都是通过调用dataset api实现

1. 多线程数据读取

第一种方法是可以直接从csv里读取数据,但返回值是tensor,需要在sess里run一下才能返回真实值,无法实现真正的并行处理,但如果直接用csv文件或其他什么文件存了特征值,可以直接读取后进行训练,可使用这种方法.

import tensorflow as tf

#这里是返回的数据类型,具体内容无所谓,类型对应就好了,比如我这个,就是一个四维的向量,前三维是字符串类型 最后一维是int类型
record_defaults = [[""], [""], [""], [0]]


def decode_csv(line):
 parsed_line = tf.decode_csv(line, record_defaults)
 label = parsed_line[-1]  # label 
 del parsed_line[-1]   # delete the last element from the list
 features = tf.stack(parsed_line) # Stack features so that you can later vectorize forward prop., etc.
 #label = tf.stack(label)   #NOT needed. Only if more than 1 column makes the label...
 batch_to_return = features, label
 return batch_to_return

filenames = tf.placeholder(tf.string, shape=[None])
dataset5 = tf.data.Dataset.from_tensor_slices(filenames)
#在这里设置线程数目
dataset5 = dataset5.flat_map(lambda filename: tf.data.TextLineDataset(filename).skip(1).map(decode_csv,num_parallel_calls=15)) 
dataset5 = dataset5.shuffle(buffer_size=1000)
dataset5 = dataset5.batch(32) #batch_size
iterator5 = dataset5.make_initializable_iterator()
next_element5 = iterator5.get_next()

#这里是需要加载的文件名
training_filenames = ["train.csv"]
validation_filenames = ["vali.csv"]

with tf.Session() as sess:

 for _ in range(2):  
 	#通过文件名初始化迭代器
  sess.run(iterator5.initializer, feed_dict={filenames: training_filenames})
  while True:
   try:
   #这里获得真实值
    features, labels = sess.run(next_element5)
    # Train...
   # print("(train) features: ")
   # print(features)
   # print("(train) labels: ")
   # print(labels) 
   except tf.errors.OutOfRangeError:
    print("Out of range error triggered (looped through training set 1 time)")
    break

 # Validate (cost, accuracy) on train set
 print("\nDone with the first iterator\n")

 sess.run(iterator5.initializer, feed_dict={filenames: validation_filenames})
 while True:
  try:
   features, labels = sess.run(next_element5)
   # Validate (cost, accuracy) on dev set
  # print("(dev) features: ")
  # print(features)
  # print("(dev) labels: ")
  # print(labels)
  except tf.errors.OutOfRangeError:
   print("Out of range error triggered (looped through dev set 1 time only)")
   break

第二种方法,基于生成器,可以进行预处理操作了,sess里run出来的结果可以直接进行输入训练,但需要自己写一个生成器,我使用的测试代码如下:

import tensorflow as tf
import random
import threading
import numpy as np
from data import load_image,load_wave

class SequenceData():
 def __init__(self, path, batch_size=32):
  self.path = path
  self.batch_size = batch_size
  f = open(path)
  self.datas = f.readlines()
  self.L = len(self.datas)
  self.index = random.sample(range(self.L), self.L)
  
 def __len__(self):
  return self.L - self.batch_size
  
 def __getitem__(self, idx):
  batch_indexs = self.index[idx:(idx+self.batch_size)]
  batch_datas = [self.datas[k] for k in batch_indexs]
  img1s,img2s,audios,labels = self.data_generation(batch_datas)
  return img1s,img2s,audios,labels

 def gen(self):
  for i in range(100000):
   t = self.__getitem__(i)
   yield t

 def data_generation(self, batch_datas):
 	#预处理操作,数据在参数里
  return img1s,img2s,audios,labels

#这里的type要和实际返回的数据类型对应,如果在自己的处理代码里已经考虑的batchszie,那这里的batch设为1即可
dataset = tf.data.Dataset().batch(1).from_generator(SequenceData('train.csv').gen,
           output_types= (tf.float32,tf.float32,tf.float32,tf.int64))
dataset = dataset.map(lambda x,y,z,w : (x,y,z,w), num_parallel_calls=32).prefetch(buffer_size=1000)
X, y,z,w = dataset.make_one_shot_iterator().get_next()

with tf.Session() as sess:
 for _ in range(100000):
  a,b,c,d = sess.run([X,y,z,w])
  print(a.shape)

不过python的多线程并不是真正的多线程,虽然看起来我是启动了32线程,但运行时的CPU占用如下所示:

Tensorflow 多线程与多进程数据加载实例

还剩这么多核心空着,然后就是第三个版本了,使用了queue来缓存数据,训练需要数据时直接从queue中进行读取,是一个到多进程的过度版本(vscode没法debug多进程,坑啊,还以为代码写错了,在vscode里多进程直接就没法运行),在初始化时启动多个线程进行数据的预处理:

import tensorflow as tf
import random
import threading
import numpy as np
from data import load_image,load_wave
from queue import Queue

class SequenceData():
 def __init__(self, path, batch_size=32):
  self.path = path
  self.batch_size = batch_size
  f = open(path)
  self.datas = f.readlines()
  self.L = len(self.datas)
  self.index = random.sample(range(self.L), self.L)
  self.queue = Queue(maxsize=20)

  for i in range(32):
   threading.Thread(target=self.f).start()
 def __len__(self):
  return self.L - self.batch_size
 def __getitem__(self, idx):
  batch_indexs = self.index[idx:(idx+self.batch_size)]
  batch_datas = [self.datas[k] for k in batch_indexs]
  img1s,img2s,audios,labels = self.data_generation(batch_datas)
  return img1s,img2s,audios,labels
 
 def f(self):
  for i in range(int(self.__len__()/self.batch_size)):
   t = self.__getitem__(i)
   self.queue.put(t)

 def gen(self):
  while 1:
   yield self.queue.get()

 def data_generation(self, batch_datas):
  #数据预处理操作
  return img1s,img2s,audios,labels

#这里的type要和实际返回的数据类型对应,如果在自己的处理代码里已经考虑的batchszie,那这里的batch设为1即可
dataset = tf.data.Dataset().batch(1).from_generator(SequenceData('train.csv').gen,
           output_types= (tf.float32,tf.float32,tf.float32,tf.int64))
dataset = dataset.map(lambda x,y,z,w : (x,y,z,w), num_parallel_calls=1).prefetch(buffer_size=1000)
X, y,z,w = dataset.make_one_shot_iterator().get_next()

with tf.Session() as sess:
 for _ in range(100000):
  a,b,c,d = sess.run([X,y,z,w])
  print(a.shape)

2. 多进程数据读取

这里的代码和多线程的第三个版本非常类似,修改为启动进程和进程类里的Queue即可,但千万不要在vscode里直接debug!在vscode里直接f5运行进程并不能启动.

from __future__ import unicode_literals
from functools import reduce
import tensorflow as tf
import numpy as np
import warnings
import argparse
import skimage.io
import skimage.transform
import skimage
import scipy.io.wavfile
from multiprocessing import Process,Queue

class SequenceData():
 def __init__(self, path, batch_size=32):
  self.path = path
  self.batch_size = batch_size
  f = open(path)
  self.datas = f.readlines()
  self.L = len(self.datas) 
  self.index = random.sample(range(self.L), self.L)
  self.queue = Queue(maxsize=30)
  
  self.Process_num=32
  for i in range(self.Process_num):
   print(i,'start')
   ii = int(self.__len__()/self.Process_num)
   t = Process(target=self.f,args=(i*ii,(i+1)*ii))
   t.start()
 def __len__(self):
  return self.L - self.batch_size
 def __getitem__(self, idx):
  batch_indexs = self.index[idx:(idx+self.batch_size)]
  batch_datas = [self.datas[k] for k in batch_indexs]
  img1s,img2s,audios,labels = self.data_generation(batch_datas)
  return img1s,img2s,audios,labels
 
 def f(self,i_l,i_h):
  for i in range(i_l,i_h):
   t = self.__getitem__(i)
   self.queue.put(t)

 def gen(self):
  while 1:
   t = self.queue.get()
   yield t[0],t[1],t[2],t[3]

 def data_generation(self, batch_datas):
  #数据预处理操作
  return img1s,img2s,audios,labels

epochs = 2

data_g = SequenceData('train_1.csv',batch_size=48)
dataset = tf.data.Dataset().batch(1).from_generator(data_g.gen,
           output_types= (tf.float32,tf.float32,tf.float32,tf.float32))
X, y,z,w = dataset.make_one_shot_iterator().get_next()

with tf.Session() as sess:

 tf.global_variables_initializer().run()
 for i in range(epochs):
  for j in range(int(len(data_g)/(data_g.batch_size))):
   face1,face2,voice, labels = sess.run([X,y,z,w])
   print(face1.shape)

然后,最后实现的效果

Tensorflow 多线程与多进程数据加载实例

以上这篇Tensorflow 多线程与多进程数据加载实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python时间戳与时间字符串互相转换实例代码
Nov 28 Python
python3+PyQt5实现柱状图
Apr 24 Python
Djang的model创建的字段和参数详解
Jul 27 Python
python 标准差计算的实现(std)
Jul 29 Python
python 字符串常用函数详解
Sep 11 Python
详解Python在使用JSON时需要注意的编码问题
Dec 06 Python
python实现人机猜拳小游戏
Feb 03 Python
mac 上配置Pycharm连接远程服务器并实现使用远程服务器Python解释器的方法
Mar 19 Python
基于jupyter代码无法在pycharm中运行的解决方法
Apr 21 Python
python爬虫实现POST request payload形式的请求
Apr 30 Python
Python selenium 加载并保存QQ群成员,去除其群主、管理员信息的示例代码
May 28 Python
基于opencv实现简单画板功能
Aug 02 Python
TensorFlow自定义损失函数来预测商品销售量
Feb 05 #Python
解决Tensorflow 内存泄露问题
Feb 05 #Python
TensorFlow实现指数衰减学习率的方法
Feb 05 #Python
关于Tensorflow使用CPU报错的解决方式
Feb 05 #Python
解决Tensorflow sess.run导致的内存溢出问题
Feb 05 #Python
解决TensorFlow训练内存不断增长,进程被杀死问题
Feb 05 #Python
浅谈tensorflow之内存暴涨问题
Feb 05 #Python
You might like
PHP中加密解密函数与DES加密解密实例
2014/10/17 PHP
解决更换PHP5.4以上版本后Dedecms后台登录空白问题的方法
2015/10/23 PHP
php基于jquery的ajax技术传递json数据简单实例
2016/04/15 PHP
php微信开发自定义菜单
2016/08/27 PHP
js Function类型
2011/12/04 Javascript
JavaScript解析URL参数示例代码
2013/08/12 Javascript
没有document.getElementByName方法
2013/08/19 Javascript
jquery 选取方法都有哪些
2014/05/18 Javascript
JavaScript跨平台的开源框架NativeScript
2015/03/24 Javascript
JavaScript获取网页中第一个图片id的方法
2015/04/03 Javascript
JavaScript中数据结构与算法(三):链表
2015/06/19 Javascript
javascript常用功能汇总
2015/07/05 Javascript
JavaScript正则表达式匹配 div  style标签
2016/03/15 Javascript
Bootstrap+jfinal实现省市级联下拉菜单
2016/05/30 Javascript
JavaScript 字符串常用操作小结(非常实用)
2016/11/30 Javascript
Mac 安装 nodejs方法(图文详细步骤)
2017/10/30 NodeJs
nodejs 递归拷贝、读取目录下所有文件和目录
2019/07/18 NodeJs
vue实现表单录入小案例
2019/09/27 Javascript
mpvue微信小程序开发之实现一个弹幕评论
2019/11/24 Javascript
Javascript ParentNode和ChildNode接口原理解析
2020/03/16 Javascript
javascript实现简单搜索功能
2020/03/26 Javascript
python实现的自动发送消息功能详解
2019/08/15 Python
Python实现语音识别和语音合成功能
2019/09/20 Python
python科学计算之numpy——ufunc函数用法
2019/11/25 Python
Python通过TensorFLow进行线性模型训练原理与实现方法详解
2020/01/15 Python
Python建造者模式案例运行原理解析
2020/06/29 Python
完美解决IE8下不兼容rgba()的问题
2017/03/31 HTML / CSS
美国批发零售网站:GearXS
2016/07/26 全球购物
美国宠物用品网站:Value Pet Supplies
2018/03/17 全球购物
毕业实习评语
2014/02/10 职场文书
节能减耗标语
2014/06/21 职场文书
道路施工安全责任书
2014/07/24 职场文书
高速铁道技术专业求职信
2014/08/09 职场文书
群众路线四风自我剖析材料
2014/10/08 职场文书
公司行政助理岗位职责
2015/04/11 职场文书
vue使用localStorage持久性存储实现评论列表
2022/04/14 Vue.js