Python求凸包及多边形面积教程


Posted in Python onApril 12, 2020

一般有两种算法来计算平面上给定n个点的凸包:Graham扫描法(Graham's scan),时间复杂度为O(nlgn);Jarvis步进法(Jarvis march),时间复杂度为O(nh),其中h为凸包顶点的个数。这两种算法都按逆时针方向输出凸包顶点。

Graham扫描法

用一个栈来解决凸包问题,点集Q中每个点都会进栈一次,不符合条件的点会被弹出,算法终止时,栈中的点就是凸包的顶点(逆时针顺序在边界上)。

算法步骤如下图:

Python求凸包及多边形面积教程

Python求凸包及多边形面积教程

Python求凸包及多边形面积教程

Python求凸包及多边形面积教程

Python求凸包及多边形面积教程

Python求凸包及多边形面积教程

import sys
import math
import time
import random

#获取基准点的下标,基准点是p[k]
def get_leftbottompoint(p):
 k = 0
 for i in range(1, len(p)):
  if p[i][1] < p[k][1] or (p[i][1] == p[k][1] and p[i][0] < p[k][0]):
   k = i
 return k

#叉乘计算方法
def multiply(p1, p2, p0):
 return (p1[0] - p0[0]) * (p2[1] - p0[1]) - (p2[0] - p0[0]) * (p1[1] - p0[1])

#获取极角,通过求反正切得出,考虑pi/2的情况
def get_arc(p1, p0):
 # 兼容sort_points_tan的考虑
 if (p1[0] - p0[0]) == 0:
  if ((p1[1] - p0[1])) == 0:
   return -1;
  else:
   return math.pi / 2
 tan = float((p1[1] - p0[1])) / float((p1[0] - p0[0]))
 arc = math.atan(tan)
 if arc >= 0:
  return arc
 else:
  return math.pi + arc

#对极角进行排序,排序结果list不包含基准点
def sort_points_tan(p, pk):
 p2 = []
 for i in range(0, len(p)):
  p2.append({"index": i, "arc": get_arc(p[i], pk)})
 #print('排序前:',p2)
 p2.sort(key=lambda k: (k.get('arc')))
 #print('排序后:',p2)
 p_out = []
 for i in range(0, len(p2)):
  p_out.append(p[p2[i]["index"]])
 return p_out

def convex_hull(p):
 p=list(set(p))
 #print('全部点:',p)
 k = get_leftbottompoint(p)
 pk = p[k]
 p.remove(p[k])
 #print('排序前去除基准点的所有点:',p,'基准点:',pk)

 p_sort = sort_points_tan(p, pk) #按与基准点连线和x轴正向的夹角排序后的点坐标
 #print('其余点与基准点夹角排序:',p_sort)
 p_result = [pk,p_sort[0]]

 top = 2
 for i in range(1, len(p_sort)):
  #####################################
  #叉乘为正,向前递归删点;叉乘为负,序列追加新点
  while(multiply(p_result[-2], p_sort[i],p_result[-1]) > 0):
   p_result.pop()
  p_result.append(p_sort[i]) 
 return p_result#测试
if __name__ == '__main__':
 pass
 test_data = [(220, -100), (0,0), (-40, -170), (240, 50), (-160, 150), (-210, -150)]
 print(test_data)

 result = convex_hull(test_data)
 print(result)
 t=0

import matplotlib.pyplot as plt
x1=[]
y1=[]
for i in range(len(test_data)):
 ri=test_data[i]
 #print(ri)
 x1.append(ri[0])
 y1.append(ri[1])

plt.plot(x1,y1,linestyle=' ',marker='.')


xx=[]
yy=[]
for i in range(len(result)):
 ri=result[i]
 #print(ri)
 xx.append(ri[0])
 yy.append(ri[1])

plt.plot(xx,yy,linestyle=' ',marker='*')

Python求凸包及多边形面积教程

计算多边形面积

(1)顺时针给定构成凸包的n个点坐标,叉乘法求多边形面积:

Python求凸包及多边形面积教程

def GetAreaOfPolyGonbyVector(points):
 # 基于向量叉乘计算多边形面积
 area = 0
 if(len(points)<3):
  raise Exception("error")

 for i in range(0,len(points)-1):
  p1 = points[i]
  p2 = points[i + 1]

  triArea = (p1[0]*p2[1] - p2[0]*p1[1])/2
  #print(triArea)
  area += triArea

 fn=(points[-1][0]*points[0][1]-points[0][0]*points[-1][1])/2
 #print(fn)
 return abs(area+fn)

points = []
x = [1,3,2]
y = [1,2,2] 
#[(1,1),(3,1),(5,3),(3,5),(1,3)] 
# x=[1,3,5,3,1]
# y=[1,1,3,5,3]
for index in range(len(x)):
 points.append((x[index],y[index]))
area = GetAreaOfPolyGonbyVector(points)
print(area)
#print(math.ceil(area))

(2)顺时针给定构成凸包的n个点经纬度坐标,先将经纬度坐标转化成凸多边形的边的经纬度距离,利用海伦公式求多边形面积:

from geopy.distance import vincenty
import math
def HeronGetAreaOfPolyGonbyVector(points):
 # 基于海伦公式计算多边形面积
 area = 0
 if(len(points)<3):
  raise Exception("error")

 pb=((points[-1][0]+points[0][0])/2,(points[-1][1]+points[0][1])/2) #基准点选为第一个点和最后一个点连线边上的中点

 for i in range(0,len(points)-1):
  p1 = points[i]
  p2 = points[i + 1]

  db1 = vincenty(pb,p1).meters #根据维度转化成经纬度距离
  d12 = vincenty(p1,p2).meters
  d2b = vincenty(p2,pb).meters
  #print(db1,d12,d2b)

  hc = (db1+d12+d2b)/2 #db1是基准点和p1的距离,d12是p1和p2的距离,d2b是p2和基准点距离
  #print(hc, hc-db1, hc-d12, hc-d2b)
  triArea = math.sqrt(hc*(hc-db1)*(hc-d12)*(hc-d2b)) 
  #print(triArea)
  area += triArea

 return area


points = []
x = [1,3,2]
y = [1,2,2] 
#[(1,1),(3,1),(5,3),(3,5),(1,3)] 
# x=[1,3,5,3,1]
# y=[1,1,3,5,3]
for index in range(len(x)):
 points.append((x[index],y[index]))

area = HeronGetAreaOfPolyGonbyVector(points)
print(area)
#print(math.ceil(area))

Graham程序原理

(1)基准点的确认原则:

有唯一的某个点纵坐标最小,该点为基准点;

不止一个点的纵坐标最小,选这些点里最靠左的为基准点

(2)计算叉乘【后续利用叉乘正负判断夹角是否大于180o】:

Python求凸包及多边形面积教程

(3)获取极角,通过求反正切得出:

若横纵坐标都相等(两点相同),返回-1;

若横坐标相等/纵坐标不相等(两点连线垂直y轴),返回 Python求凸包及多边形面积教程

Python求凸包及多边形面积教程

(4)对极角进行排序,排序结果list不包含基准点:

p2=[{"index":0, "arc":get_arc(p[0],p[k])},
 {"index":1, "arc":get_arc(p[1],p[k])},
 ···
 {"index":k-1, "arc":get_arc(p[k-1],p[k])},
 {"index":k+1, "arc":get_arc(p[k+1],p[k])},
 ···
 {"index":n, "arc":get_arc(p[n],p[k])}]
#get_arc(p[0],p[k])即获得p[0]点与基准点p[k]连线的极角(与x轴正向夹角)
#根据p2的“arc”键的值从小到大排序,最后输出按该角度值排序对应顺序的各个点

(5)逆时针确定凸多边形:

Python求凸包及多边形面积教程

主要是找角度是否大于180o——差乘正负——点进出栈顺序三者关系

Python求凸包及多边形面积教程

...一直遍历到最后一个点...一直遍历到最后一个点

规律:叉乘>0,夹角小于180o,递归向前删点;叉乘<0,夹角大于180o,不删点,加入新点,向后遍历叉乘>0,夹角小于180o,递归向前删点;叉乘<0,夹角大于180o,不删点,加入新点,向后遍历

注意:(a)上述给非基准点按极角从到大小排号时,有两个及以上点“和基准点连线构成的极角”相等时,这些点的排号挨着但是没有固定顺序,这点并不影响算法给出凸包的准确性。(b)对排号最后的一个点,扫描算法里没有任何删除该点的机制,但是这点也不影响算法给出凸包的准确性。(c)上述程序需要额外加入,判断结束栈内点数小于3和筛选凸包前点数小于3,不能计算多边形面积的情况,可以直接给这种情况赋值0返回。

以上这篇Python求凸包及多边形面积教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
从零学python系列之数据处理编程实例(二)
May 22 Python
Python中的特殊语法:filter、map、reduce、lambda介绍
Apr 14 Python
python检查指定文件是否存在的方法
Jul 06 Python
Swift 3.0在集合类数据结构上的一些新变化总结
Jul 11 Python
对python中的乘法dot和对应分量相乘multiply详解
Nov 14 Python
Python实现定时自动关闭的tkinter窗口方法
Feb 16 Python
python3使用matplotlib绘制条形图
Mar 25 Python
Django logging配置及使用详解
Jul 23 Python
Python Web框架之Django框架文件上传功能详解
Aug 16 Python
python tkinter组件使用详解
Sep 16 Python
python tkinter Entry控件的焦点移动操作
May 22 Python
Python实现列表拼接和去重的三种方式
Jul 02 Python
python实现人脸签到系统
Apr 13 #Python
python实现IOU计算案例
Apr 12 #Python
python 已知平行四边形三个点,求第四个点的案例
Apr 12 #Python
python 已知三条边求三角形的角度案例
Apr 12 #Python
python实现输入三角形边长自动作图求面积案例
Apr 12 #Python
Python3如何判断三角形的类型
Apr 12 #Python
Python判断三段线能否构成三角形的代码
Apr 12 #Python
You might like
php中unserialize返回false的解决方法
2014/09/22 PHP
[原创]php集成安装包wampserver修改密码后phpmyadmin无法登陆的解决方法
2016/11/23 PHP
PHP 枚举类型的管理与设计知识点总结
2020/02/13 PHP
比较搞笑的js陷阱题
2010/02/07 Javascript
Jquery Ajax学习实例7 Ajax所有过程事件分析示例
2010/03/23 Javascript
超酷的网页音乐播放器DewPlayer使用方法
2010/12/18 Javascript
js获取鼠标点击的位置实现思路及代码
2014/05/09 Javascript
js实现带关闭按钮始终显示在网页最底部工具条的方法
2015/03/02 Javascript
用JavaScript显示浏览器客户端信息的超相近教程
2015/06/18 Javascript
PhotoSwipe异步动态加载图片方法
2016/08/25 Javascript
浅谈javascript中的Function和Arguments
2016/08/30 Javascript
JS使用cookie实现只出现一次的广告代码效果
2017/04/22 Javascript
分享Bootstrap简单表格、表单、登录页面
2017/08/04 Javascript
javascript标准库(js的标准内置对象)总结
2018/05/26 Javascript
JavaScript封闭函数及常用内置对象示例
2019/05/13 Javascript
vue-router 2.0 跳转之router.push()用法说明
2020/08/12 Javascript
寻找网站后台地址的python脚本
2014/09/01 Python
Python中的getopt函数使用详解
2015/07/28 Python
Python手机号码归属地查询代码
2016/05/04 Python
python递归查询菜单并转换成json实例
2017/03/27 Python
浅谈Tensorflow模型的保存与恢复加载
2018/04/26 Python
在Django中输出matplotlib生成的图片方法
2018/05/24 Python
网红编程语言Python将纳入高考你怎么看?
2018/06/07 Python
Python中创建二维数组
2018/10/17 Python
Django 路由控制的实现代码
2018/11/08 Python
django数据关系一对多、多对多模型、自关联的建立
2019/07/24 Python
django rest framework serializer返回时间自动格式化方法
2020/03/31 Python
html5 拖拽上传图片实例演示
2013/04/01 HTML / CSS
HTML5手机端弹出遮罩菜单特效代码
2016/01/27 HTML / CSS
使用phonegap创建联系人的实现方法
2017/03/30 HTML / CSS
荷兰超市:DEEN
2018/03/14 全球购物
斯图尔特·韦茨曼鞋加拿大官网:Stuart Weitzman加拿大
2019/10/13 全球购物
2014预备党员党课学习心得范文
2014/07/08 职场文书
购房协议书范本
2014/10/02 职场文书
黄山导游词
2015/01/31 职场文书
学习杨善洲同志先进事迹心得体会
2016/01/23 职场文书