python 实现检验33品种数据是否是正态分布


Posted in Python onDecember 09, 2019

我就废话不多说了,直接上代码吧!

# -*- coding: utf-8 -*-
"""
Created on Thu Jun 22 17:03:16 2017
@author: yunjinqi 
 
E-mail:yunjinqi@qq.com 
 
Differentiate yourself in the world from anyone else.
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.tsa.stattools as ts
import statsmodels.api as sm
from statsmodels.graphics.api import qqplot
from statsmodels.sandbox.stats.runs import runstest_1samp
import scipy.stats as sts 
 
namelist=['cu','al','zn','pb','sn','au','ag','rb','hc','bu','ru','m9','y9','a9',
    'p9','c9','cs','jd','l9','v9','pp','j9','jm','i9','sr','cf',
    'zc','fg','ta','ma','oi','rm','sm']
j=0
for i in namelist:
 
 filename='C:/Users/HXWD/Desktop/数据/'+i+'.csv'
 data=pd.read_csv(filename,encoding='gbk')
 data.columns=['date','open','high','low','close','amt','opi']
 data.head()
 data=np.log(data['close'])
 r=data-data.shift(1)
 r=r.dropna()
 #print(r)
 rate = np.array(list(r))
 print('品种{}数据长度{}均值{}标准差{}方差{}偏度{}峰度{}'.format(i,len(rate),
   rate.mean(),rate.std(),rate.var(),sts.skew(rate),
   sts.kurtosis(rate)))
#结果

品种cu数据长度4976均值0.00012152573153376814标准差0.014276535327917023方差0.0002038194609692628偏度-0.16028824462338614峰度2.642455989417427
品种al数据长度5406均值-2.3195089066551237e-05标准差0.009053990835143359方差8.197475004285994e-05偏度-0.34748915595295604峰度5.083890815632417
品种zn数据长度2455均值-0.00011823058103745542标准差0.016294570963077237方差0.00026551304287075983偏度-0.316153612624431峰度1.7208737518119293
品种pb数据长度1482均值-9.866770650275384e-05标准差0.011417348325010642方差0.0001303558427746233偏度-0.21599833469407717峰度5.878332673854807
品种sn数据长度510均值0.00034131697514080907标准差0.013690993291257949方差0.00018744329730127014偏度0.024808842588775293峰1.072347367872859
品种au数据长度2231均值0.0001074021979121701标准差0.012100456199756058方差0.00014642104024221482偏度-0.361814930575112峰度4.110915875328322
品种ag数据长度1209均值-0.0003262089978362889标准差0.014853094655086982方差0.00022061442083297348偏度-0.2248883178719188峰度4.296247290616826
品种rb数据长度1966均值-6.984154093694264e-05标准差0.013462363746262961方差0.00018123523763669528偏度0.07827546016742666峰度5.198115698123077
品种hc数据长度758均值-7.256339078572361e-05标准差0.01710980071993581方差0.000292745280675916偏度-0.08403481899486816峰度3.6250669416786323
品种bu数据长度864均值-0.0006258998207218544标准差0.01716581014361468方差0.0002946650378866246偏度-0.41242405508236435峰度2.437556911829674
品种ru数据长度4827均值5.17426767764321e-05标准差0.016747187916000945方差0.00028046830309384806偏度-0.1986573449586119峰度1.736876616149547
品种m9数据长度4058均值8.873778774208505e-05标准差0.012812626470272115方差0.0001641633970667177偏度-0.12119836197638824峰度2.159984922606264
品种y9数据长度2748均值4.985975458693667e-05标准差0.012855191360434762方差0.00016525594491339655偏度-0.33456507243405786峰度2.566586342814616
品种a9数据长度5392均值9.732600802295795e-05标准差0.010601259945310599方差0.00011238671242804687偏度-0.08768586026629852峰度3.898562231789457
品种p9数据长度2311均值-0.00021108840931287863标准差0.014588073181583774方差0.00021281187915124373偏度-0.2881364812318466峰度1.693401619226936
品种c9数据长度3075均值0.00010060972262212708标准差0.007206853641314312方差5.1938739407325355e-05偏度-5.204419912904765e-05峰6.074899127691497
品种cs数据长度573均值-0.0006465907683602394标准差0.011237570390237955方差0.00012628298827555283偏度0.10170996173895988峰度1.176384982024672
品种jd数据长度847均值-9.035290965408637e-05标准差0.01167344224455134方差0.00013626925383687581偏度-0.0682866825422671峰度2.0899893901516133
品种l9数据长度2370均值-0.00014710186232216803标准差0.014902467199956509方差0.00022208352864577958偏度-0.2105262196327885峰度1.8796065573836
品种v9数据长度1927均值-5.190379527562386e-05标准差0.010437020362123387方差0.00010893139403937818偏度-0.050531345744352064峰度3.47595007264211
品种pp数据长度773均值-0.0003789841804842144标准差0.01439578332841083方差0.00020723857763855122偏度0.05479337073436029峰度1.3397870170464232
品种j9数据长度1468均值-0.00021854062264841954标准差0.01639429047795793方差0.000268772760275662偏度-0.10048542944058193峰度5.156597958913997
品种jm数据长度997均值-0.00011645794468155402标准差0.01792430947223131方差0.000321280870056321偏度0.0010592028961588294峰度3.743159578760195
品种i9数据长度862均值-0.0007372124442033161标准差0.021187573227350754方差0.0004489132592643504偏度0.00014411506989559858峰度1.585951370650
品种sr数据长度2749均值0.00012213466321006727标准差0.012183745931527473方差0.00014844366492401223偏度-0.038613285961243735峰度2.520231613626
品种cf数据长度3142均值2.2008517526768612e-05标准差0.010657271857464626方差0.00011357744344390753偏度-0.034412876065561426峰度5.6421501855702
品种zc数据长度475均值0.00041282070613302206标准差0.015170141171075784方差0.00023013318315036853偏度-0.1393361750238265峰度1.2533894316392926
品种fg数据长度1068均值-1.57490340832121e-05标准差0.013148411070446203方差0.00017288071367743227偏度0.008980132282547534峰度1.9028507879273144
品种ta数据长度2518均值-0.00023122774877981512标准差0.013637519813532077方差0.00018598194666447998偏度-0.9126347458178135峰度10.954670464918
品种ma数据长度700均值-0.00024988691257348835标准差0.015328611435734359方差0.00023496632854772616偏度0.0164362832185746峰度1.1736088397060
品种oi数据长度1098均值-0.0004539513793265549标准差0.009589990427720812方差9.196791640377678e-05偏度-0.28987574371279706峰度3.871322266527967
品种rm数据长度1049均值1.458523923966432e-05标准差0.013432556545527753方差0.00018043357534880047偏度-0.053300026893851014峰度1.3938292783638
品种sm数据长度548均值-3.179600698107184e-05标准差0.020018458278106444方差0.00040073867183228846偏度-2.6734390275887647峰度31.533801188366837

#正态分布的偏度应该是0,峰度是3,所以,不满者这些的都是非标准正态分布

以上这篇python 实现检验33品种数据是否是正态分布就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python自动重试HTTP连接装饰器
Apr 28 Python
Python中exit、return、sys.exit()等使用实例和区别
May 28 Python
解决python2.7 查询mysql时出现中文乱码
Oct 09 Python
Python简单计算数组元素平均值的方法示例
Dec 26 Python
Python基于matplotlib实现绘制三维图形功能示例
Jan 18 Python
python实现旋转和水平翻转的方法
Oct 25 Python
python实现桌面壁纸切换功能
Jan 21 Python
Python爬虫使用浏览器cookies:browsercookie过程解析
Oct 22 Python
Python多线程thread及模块使用实例
Apr 28 Python
Python使用内置函数setattr设置对象的属性值
Oct 16 Python
python中xlutils库用法浅析
Dec 29 Python
Python机器学习之基础概述
May 19 Python
Python远程开发环境部署与调试过程图解
Dec 09 #Python
使用 Python 合并多个格式一致的 Excel 文件(推荐)
Dec 09 #Python
Python udp网络程序实现发送、接收数据功能示例
Dec 09 #Python
python3 tcp的粘包现象和解决办法解析
Dec 09 #Python
python绘制规则网络图形实例
Dec 09 #Python
Spring实战之使用util:命名空间简化配置操作示例
Dec 09 #Python
python爬虫模拟浏览器的两种方法实例分析
Dec 09 #Python
You might like
php中的实现trim函数代码
2007/03/19 PHP
PHP中几种常见的超时处理全面总结
2012/09/11 PHP
PHP转换文本框内容为HTML格式的方法
2016/07/20 PHP
微信公众号开发客服接口实例代码
2016/10/21 PHP
页面装载js及性能分析方法介绍
2014/03/21 Javascript
让JavaScript的Alert弹出框失效的方法禁止弹出警告框
2014/09/03 Javascript
DOM节点深度克隆函数cloneNode()用法实例
2015/01/12 Javascript
JS获取数组最大值、最小值及长度的方法
2015/11/24 Javascript
js实现首屏延迟加载实现方法 js实现多屏单张图片延迟加载效果
2017/07/17 Javascript
在vue中更换字体,本地存储字体非引用在线字体库的方法
2018/09/28 Javascript
angularJs使用ng-repeat遍历后选中某一个的方法
2018/09/30 Javascript
学习node.js 断言的使用详解
2019/03/18 Javascript
原生js实现可兼容PC和移动端的拖动滑块功能详解【测试可用】
2019/08/15 Javascript
jQuery轮播图功能制作方法详解
2019/12/03 jQuery
[03:00]DOTA2-DPC中国联赛1月18日Recap集锦
2021/03/11 DOTA
python中pygame模块用法实例
2014/10/09 Python
python使用post提交数据到远程url的方法
2015/04/29 Python
用Python删除本地目录下某一时间点之前创建的所有文件的实例
2017/12/14 Python
python tensorflow基于cnn实现手写数字识别
2018/01/01 Python
wxPython之解决闪烁的问题
2018/01/15 Python
python获取文件路径、文件名、后缀名的实例
2018/04/23 Python
Django框架的使用教程路由请求响应的方法
2018/07/03 Python
Python2比较当前图片跟图库哪个图片相似的方法示例
2019/09/28 Python
python对一个数向上取整的实例方法
2020/06/18 Python
Nili Lotan官网:Nili Lotan同名品牌
2018/01/07 全球购物
英国知名化妆品网站:Revolution Beauty(原TAM Beauty)
2018/02/28 全球购物
戴尔新西兰官网:Dell New Zealand
2020/01/07 全球购物
Python面试题集
2012/03/08 面试题
学生拾金不昧表扬信
2014/01/21 职场文书
妈妈的账单教学反思
2014/02/06 职场文书
2014年公司植树节活动方案
2014/03/04 职场文书
护士辞职信怎么写
2015/02/27 职场文书
交通处罚决定书
2015/06/24 职场文书
同乡会致辞
2015/07/30 职场文书
golang 定时任务方面time.Sleep和time.Tick的优劣对比分析
2021/05/05 Golang
Golang的继承模拟实例
2021/06/30 Golang