使用Python对Dicom文件进行读取与写入的实现


Posted in Python onApril 20, 2020

Pydicom

单张影像的读取

使用 pydicom.dcmread() 函数进行单张影像的读取,返回一个pydicom.dataset.FileDataset对象.

import os
import pydicom
# 调用本地的 dicom file 
folder_path = r"D:\Files\Data\Materials"
file_name = "PA1_0001.dcm"
file_path = os.path.join(folder_path,file_name)
ds = pydicom.dcmread(file_path)

在一些特殊情况下,比如直接读取从医院拿到的数据(未经任何处理)时,可能会发生以下报错:

raise InvalidDicomError("File is missing DICOM File Meta Information "
pydicom.errors.InvalidDicomError: File is missing DICOM File Meta Information header or the 'DICM' prefix is missing from the header. Use force=True to force reading.

可以看到,由于缺失文件元信息头,无法直接读取,只能强行读取.这种情况可以直接根据提示,调整命令为:

ds = pydicom.dcmread(file_path,force=True)

但后续还会碰到:

AttributeError: 'Dataset' object has no attribute 'TransferSyntaxUID'

在网上检索后发现,可以通过设置TransferSyntaxUID来解决问题:

ds.file_meta.TransferSyntaxUID = pydicom.uid.ImplicitVRLittleEndian

这样就大功告成了(这里实际上就提前接触到了下面读取Dicom Tags的内容了)

一些简单处理

读取成功后,我们可以对 Dicom文件 进行一些简单的处理

读取并编辑Dicom Tags

可以通过两种方法来读取Tag的值

使用的Tag的Description

print(ds.PatientID,ds.StudyDate,ds.Modality)

使用 ds.get() 函数. 函数内参数采用的是Tag ID.几种简单的打开Dicom文件的软件(如RadiAnt DICOM Viewer)都可以直接看到.这里不再赘述.

ds.get(0x00100020) # 这里得到的是PatientID

读取到相应的Tag值后, 也可以将其他的值写入这些Tag.只要最后保存一下就可以了.

借助Numpy与PIL.Image

读取Dicom文件后,可以借助Numpy以及图像处理库(如PIL.Image)来进行简单的处理.

借助Numpy

import numpy as np
data = np.array(ds.pixel_array)

注意这里使用的是 np.array() 而不是 np.asarray(). 因为前者的更改并不会带来原pixel_array的改变.
在转化为ndarray后 可以直接进行简单的切割和连接,比如截取某一部分和将两张图像拼在一起等,之后再写入并保存下来即可.

借助PIL.Image

from PIL import Image
data_img = Image.fromarray(ds.pixel_array)
data_img_rotated = data_img.rotate(angle=45,resample=Image.BICUBIC,fillcolor=data_img.getpixel((0,0)))

这里展示的是旋转, 还有其他功能如resize等.
需要注意的是,从Numpy的ndarray转化为Image时,一般会发生变化:

print(data.dtype) # int16
data_rotated = np.array(data_img_rotated)
print(data_img) # int32

只需要指定参数就可以解决了

data_rotated = np.array(data_img_rotated,dtype = np.int16)

可视化

简单的可视化Pydicom没有直接的实现方法,我们可以通过上面借助Matplotlib以及Image模块来实现.但效果有限.

借助 Matplotlib (Pydicom官方文档中使用的方法)

from matplotlib import pyplot
pyplot.imshow(ds.pixel_array,cmap=pyplot.cm.bone)
pyplot.show()

效果如图所示:

使用Python对Dicom文件进行读取与写入的实现

但真实的图像是:

使用Python对Dicom文件进行读取与写入的实现

显然颜色是有区别的.导致这种差别的原因是pyplot函数使用的cm也就是"color map" 是简单的"bone" 并不能满足医学图像的要求.

借助Image模块

data_img.show()

一条指令即可,但是效果很差,如图所示:

使用Python对Dicom文件进行读取与写入的实现

综合来看,两种方法都不是很好.

单张影像的写入

经过上面对Tag值的修改, 对图像的切割, 旋转等操作.最后需要重新写入该Dicom文件.

ds.PixelData = data_rotated.tobytes()
ds.Rows,ds.Columns = data_rotated.shape
new_name = "dicom_rotated.dcm"
ds.save_as(os.path.join(folder_path,new_name))

SimpleITK

SimpleITK 是从基于C++的ITK迁移到Python的,所以很多方法的使用都跟C++很相似.

import SimpleITK as sitk

单张影像的读取

有两种方法:

sitk.ReadImage()
这种方法直接返回image对象,简单易懂.但是无法读取Tag的值.

img = sitk.ReadImage(file_path)
print(type(img)) # <class 'SimpleITK.SimpleITK.Image'>

sitk.ImageFileReader()
这种方法比较像C++的操作风格,需要先初始化一个对象,然后设置一些参数,最后返回image.相对更复杂,但可以操作的点比较多

file_reader = sitk.ImageFileReader()
file_reader.SetFileName(file_path) #这里只显示了必需的,还有很多可以设置的参数
data = file_reader.Execute()
# 使用这种方法读取Dicom的Tag Value
for key in file_reader.GetMetaDataKeys():
 print(key,file_reader.GetMetaData(key))

以上两种方法返回的都是三维的对象,这与Pydicom有很大的不同.

data_np = sitk.GetArrayFromImage(data)
print(data_np.shape) # (1, 512, 512) = (Slice index, Rows, Columns)

序列读取

序列读取的方法与单张图像读取的第二种方法很相似.
(暂且只发现了一种方法读取序列,如果还有其他方法,请在评论区予以补充,感谢!)

series_reader = sitk.ImageSeriesReader()
fileNames = series_reader.GetGDCMSeriesFileNames(folder_name)
series_reader.SetFileNames(fileNames)
images = series_reader.Execute()

同样,返回的也是三维的对象.

一些简单操作

SimpleITK 包含很多图像处理如滤波的工具,这里简单介绍一个边缘检测工具和可视化工具

边缘检测

以Canny边缘检测算子为例,与读取单张图像类似,同样有两种方式:

sitk.CannyEdgeDetection()
由于滤波的对象必须是32位图像或者其他格式, 需要通过 sitk.Cast() 转换. 之后可以再转换回原格式.

data_32 = sitk.Cast(data,sitk.sitkFloat32)
data_edge_1 = sitk.CannyEdgeDetection(data_32,5,30,[5]*3,[0.8]*3)

sitk.CannyEdgeDetectionImageFilter()
这个操作相对麻烦一些

Canny = sitk.CannyEdgeDetectionImageFilter()
Canny.SetLowerThreshold(5)
Canny.SetUpperThreshold(30)
Canny.SetVariance([5]*3)
Canny.SetMaximumError([0.5]*3)
data_edge_2 = Canny.Execute(data_32)

可视化

可视化的方法非常简单 只需要一条指令:

sitk.Show()

但需要先安装工具ImageJ,否则无法使用.具体的安装链接,可以参考这篇博文:sitk.show()与imageJ结合使用常见的问题

同一张Dicom文件使用sitk.Show()得到的效果如下图:

使用Python对Dicom文件进行读取与写入的实现

除此之外,ImageJ还有一个Tool Bar 支持对图像的进一步处理:

使用Python对Dicom文件进行读取与写入的实现

可见,SimpleITK的可视化要比上面介绍的强大很多,不仅可以实现单张图像的可视化以及图像处理,还可以同时对整个序列的图像进行统一处理.

单张影像的写入

同样有两种方法

sitk.WriteImage()

new_name = "new_MR_2.dcm"
sitk.WriteImage(img,os.path.join(folder_name,new_name))

sitk.ImageFileWriter()

file_writer = sitk.ImageFileWriter()
file_writer.SetFileName(os.path.join(folder_name,new_name))
file_writer.SetImageIO(imageio="GDCMImageIO")
file_writer.Execute(img)

使用这两种方法进行写入的时候,会发现,即便什么也没有做,但得到的新Dicom文件要小于原始的Dicom文件.这是因为新的Dicom文件中没有Private Creator信息(属于Dicom Tag的内容).当然如果原始Dicom文件中本就没有这种信息,文件大小是保持相同的.
因为很多时候只是对图像进行处理,所以不再深究.

到此这篇关于使用Python对Dicom文件进行读取与写入的实现的文章就介绍到这了,更多相关Python Dicom文件进行读取与写入内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python线程中对join方法的运用的教程
Apr 09 Python
Python的randrange()方法使用教程
May 15 Python
Python+django实现文件下载
Jan 17 Python
在python3环境下的Django中使用MySQL数据库的实例
Aug 29 Python
浅谈Python实现Apriori算法介绍
Dec 20 Python
numpy实现合并多维矩阵、list的扩展方法
May 08 Python
详解Python装饰器
Mar 25 Python
python3的print()函数的用法图文讲解
Jul 16 Python
python 实现多维数组(array)排序
Feb 28 Python
tensorflow dataset.shuffle、dataset.batch、dataset.repeat顺序区别详解
Jun 03 Python
解决python pandas读取excel中多个不同sheet表格存在的问题
Jul 14 Python
Python 中的单分派泛函数你真的了解吗
Jun 22 Python
python 错误处理 assert详解
Apr 20 #Python
解决Jupyter Notebook使用parser.parse_args出现错误问题
Apr 20 #Python
在ipython notebook中使用argparse方式
Apr 20 #Python
Python绘制全球疫情变化地图的实例代码
Apr 20 #Python
spyder 在控制台(console)执行python文件,debug python程序方式
Apr 20 #Python
python实现小程序推送页面收录脚本
Apr 20 #Python
在spyder IPython console中,运行代码加入参数的实例
Apr 20 #Python
You might like
php制作中间带自己定义图片二维码的方法
2014/01/27 PHP
php5.3提示Function ereg() is deprecated Error问题解决方法
2014/11/12 PHP
laravel validate 设置为中文的例子(验证提示为中文)
2019/09/29 PHP
php查看一个变量的占用内存的实例代码
2020/03/29 PHP
借用Google的Javascript API Loader来加速你的网站
2009/01/28 Javascript
JQuery1.6 使用方法三
2011/11/23 Javascript
javascript的offset、client、scroll使用方法详解
2012/12/25 Javascript
动态加载jquery库的方法
2014/02/12 Javascript
js实现透明度渐变效果的方法
2015/04/10 Javascript
浅谈js数据类型判断与数组判断
2016/08/29 Javascript
jQuery下拉菜单的实现代码
2016/11/03 Javascript
BootStrap 下拉菜单点击之后不会出现下拉菜单(下拉菜单不弹出)的解决方案
2016/12/14 Javascript
vue集成百度UEditor富文本编辑器使用教程
2018/09/21 Javascript
浅谈Vue页面级缓存解决方案feb-alive(上)
2019/04/14 Javascript
小程序简单两栏瀑布流效果的实现
2019/12/18 Javascript
[15:20]DOTA2亚洲邀请赛总决赛开幕式表演:羽泉献唱
2017/04/05 DOTA
python 从远程服务器下载东西的代码
2013/02/10 Python
python中dir函数用法分析
2015/04/17 Python
python 实现数组list 添加、修改、删除的方法
2018/04/04 Python
Django多数据库的实现过程详解
2019/08/01 Python
CSS3 实现弹跳的小球动画
2020/10/26 HTML / CSS
打造经典复古风格的品牌:Alice + Olivia(爱丽丝+奥利维亚)
2016/09/07 全球购物
海外淘书首选:AbeBooks
2017/07/31 全球购物
阿联酋手表和配饰购物网站:Rivolishop
2019/11/25 全球购物
大型会议策划方案
2014/05/17 职场文书
党员学习群众路线心得体会
2014/11/04 职场文书
暑期社会实践证明书
2014/11/17 职场文书
夫妻双方自愿离婚协议书怎么写
2014/12/01 职场文书
辞职信格式模板
2015/02/27 职场文书
2015年前台文员工作总结
2015/05/18 职场文书
小兵张嘎观后感
2015/06/03 职场文书
致我们终将逝去的青春观后感
2015/06/10 职场文书
创业计划书之美甲店
2019/09/20 职场文书
解析原生JS getComputedStyle
2021/05/25 Javascript
Python实现socket库网络通信套接字
2021/06/04 Python
原生JS实现分页
2022/04/19 Javascript