对pandas进行数据预处理的实例讲解


Posted in Python onApril 20, 2018

参加kaggle数据挖掘比赛,就第一个赛题Titanic的数据,学习相关数据预处理以及模型建立,本博客关注基于pandas进行数据预处理过程。包括数据统计、数据离散化、数据关联性分析

引入包和加载数据

import pandas as pd
import numpy as np
train_df =pd.read_csv('../datas/train.csv') # train set
test_df = pd.read_csv('../datas/test.csv') # test set
combine = [train_df, test_df]

清洗数据

查看数据维度以及类型

缺失值处理

查看object数据统计信息

数值属性离散化

计算特征与target属性之间关系

查看数据维度以及类型

#查看前五条数据
print train_df.head(5) 
#查看每列数据类型以及nan情况
print train_df.info() 
# 获得所有object属性
print train_data.describe(include=['O']).columns

查看object数据统计信息

#查看连续数值属性基本统计情况
print train_df.describe() 
#查看object属性数据统计情况
print train_df.describe(include=['O']) 
# 统计Title单列各个元素对应的个数
print train_df['Title'].value_counts() 
# 属性列删除
train_df = train_df.drop(['Name', 'PassengerId'], axis=1)

缺失值处理

# 直接丢弃缺失数据列的行
print df4.dropna(axis=0,subset=['col1']) # 丢弃nan的行,subset指定查看哪几列 
print df4.dropna(axis=1) # 丢弃nan的列
# 采用其他值填充
dataset['Cabin'] = dataset['Cabin'].fillna('U') 
dataset['Title'] = dataset['Title'].fillna(0) 
# 采用出现最频繁的值填充
freq_port = train_df.Embarked.dropna().mode()[0]
dataset['Embarked'] = dataset['Embarked'].fillna(freq_port)
# 采用中位数或者平均数填充
test_df['Fare'].fillna(test_df['Fare'].dropna().median(), inplace=True)
test_df['Fare'].fillna(test_df['Fare'].dropna().mean(), inplace=True)

数值属性离散化,object属性数值化

# 创造一个新列,FareBand,将连续属性Fare切分成四份
train_df['FareBand'] = pd.qcut(train_df['Fare'], 4)
# 查看切分后的属性与target属性Survive的关系
train_df[['FareBand', 'Survived']].groupby(['FareBand'], as_index=False).mean().sort_values(by='FareBand', ascending=True)
# 建立object属性映射字典 
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Royalty":5, "Officer": 6}
dataset['Title'] = dataset['Title'].map(title_mapping)

计算特征与target属性之间关系

object与连续target属性之间,可以groupby均值

object与离散target属性之间,先将target数值化,然后groupby均值,或者分别条形统计图

连续属性需要先切割然后再进行groupby计算,或者pearson相关系数

print train_df[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False).mean().sort_values(by='AgeBand', ascending=True)

总结pandas基本操作

”' 
创建df对象 
””' 
s1 = pd.Series([1,2,3,np.nan,4,5]) 
s2 = pd.Series([np.nan,1,2,3,4,5]) 
print s1 
dates = pd.date_range(“20130101”,periods=6) 
print dates 
df = pd.DataFrame(np.random.rand(6,4),index=dates,columns=list(“ABCD”)) 
# print df 
df2 = pd.DataFrame({“A”:1, 
‘B':pd.Timestamp(‘20130102'), 
‘C':pd.Series(1,index=list(range(4)),dtype='float32'), 
‘D':np.array([3]*4,dtype=np.int32), 
‘E':pd.Categorical([‘test','train','test','train']), 
‘F':'foo' 
}) 
# print df2.dtypes
df3 = pd.DataFrame({'col1':s1,
     'col2':s2
})
print df3

'''
2.查看df数据
'''
print df3.head(2) #查看头几条
print df3.tail(3) #查看尾几条
print df.index #查看索引
print df.info() #查看非non数据条数
print type(df.values) #返回二元数组
# print df3.values
print df.describe() #对每列数据进行初步的统计
print df3
print df3.sort_values(by=['col1'],axis=0,ascending=True) #按照哪几列排序

'''
3.选择数据
'''
ser_1 = df3['col1']
print type(ser_1) #pandas.core.series.Series
print df3[0:2] #前三行
print df3.loc[df3.index[0]] #通过index来访问
print df3.loc[df3.index[0],['col2']] #通过行index,和列名来唯一确定一个位置
print df3.iloc[1] #通过位置来访问
print df3.iloc[[1,2],1:2] #通过位置来访问
print "==="
print df3.loc[:,['col1','col2']].as_matrix() # 返回nunpy二元数组
print type(df3.loc[:,['col1','col2']].as_matrix())

'''
4.布尔索引,过滤数据
'''
print df3[df3.col1 >2]
df4 = df3.copy()
df4['col3']=pd.Series(['one','two','two','three','one','two'])
print df4
print df4[df4['col3'].isin(['one','two'])]
df4.loc[:,'col3']="five"
print df4

'''
5.缺失值处理,pandas将缺失值用nan代替
'''
print pd.isnull(df4)
print df4.dropna(axis=0,subset=['col1']) # 丢弃nan的行,subset指定查看哪几列
print df4.dropna(axis=1) # 丢弃nan的列

以上这篇对pandas进行数据预处理的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python 查找文件夹下所有文件 实现代码
Jul 01 Python
python版简单工厂模式
Oct 16 Python
Python3多线程爬虫实例讲解代码
Jan 05 Python
Python实现的端口扫描功能示例
Apr 08 Python
tensorflow实现简单逻辑回归
Sep 07 Python
Python3爬虫全国地址信息
Jan 05 Python
python 实现矩阵上下/左右翻转,转置的示例
Jan 23 Python
Python中format()格式输出全解
Apr 12 Python
Python比较配置文件的方法实例详解
Jun 06 Python
python求质数列表的例子
Nov 24 Python
基于Python第三方插件实现西游记章节标注汉语拼音的方法
May 22 Python
python不同版本的_new_不同点总结
Dec 09 Python
pandas 两列时间相减换算为秒的方法
Apr 20 #Python
详谈pandas中agg函数和apply函数的区别
Apr 20 #Python
Python使用pip安装pySerial串口通讯模块
Apr 20 #Python
pandas apply 函数 实现多进程的示例讲解
Apr 20 #Python
python3+PyQt5图形项的自定义和交互 python3实现page Designer应用程序
Jul 20 #Python
Python查找两个有序列表中位数的方法【基于归并算法】
Apr 20 #Python
pandas 使用apply同时处理两列数据的方法
Apr 20 #Python
You might like
php递归列出所有文件和目录的代码
2008/09/10 PHP
通俗易懂的php防注入代码
2010/04/07 PHP
ThinkPHP行为扩展Behavior应用实例详解
2014/07/22 PHP
测试你的JS的掌握程度的代码
2009/12/09 Javascript
关于javascript中this关键字(翻译+自我理解)
2010/10/20 Javascript
javascript实现日历控件(年月日关闭按钮)
2012/12/12 Javascript
24款热门实用的jQuery插件推荐
2014/12/24 Javascript
Bootstrap所支持的表单控件实例详解
2016/05/16 Javascript
JavaScript操作 url 中 search 部分方法函数
2016/06/15 Javascript
bootstrap中使用google prettify让代码高亮的方法
2016/10/21 Javascript
浅谈Vue.js
2017/03/02 Javascript
js中setTimeout的妙用--防止循环超时
2017/03/06 Javascript
基于JavaScript实现移动端无限加载分页
2017/03/27 Javascript
基于Bootstrap分页的实例讲解(必看篇)
2017/07/04 Javascript
Angular 5.0 来了! 有这些大变化
2017/11/15 Javascript
mpvue开发音频类小程序踩坑和建议详解
2019/03/12 Javascript
vue-cli+axios实现文件上传下载功能(下载接收后台返回文件流)
2019/05/10 Javascript
layui table 列宽百分比显示的实现方法
2019/09/28 Javascript
微信小程序录音实现功能并上传(使用node解析接收)
2020/02/26 Javascript
[07:37]DOTA2-DPC中国联赛2月2日Recap集锦
2021/03/11 DOTA
python基础教程之python消息摘要算法使用示例
2014/02/10 Python
深入理解Python变量与常量
2016/06/02 Python
利用python发送和接收邮件
2016/09/27 Python
Python实现iOS自动化打包详解步骤
2018/10/03 Python
Python使用sax模块解析XML文件示例
2019/04/04 Python
Django中ORM外键和表的关系详解
2019/05/20 Python
新手如何发布Python项目开源包过程详解
2019/07/11 Python
以色列的身体护理及家居香薰品牌:Sabon NYC
2018/02/23 全球购物
美国性感内衣店:Yandy
2018/06/12 全球购物
荷兰手表网站:Watch2Day
2018/07/02 全球购物
公务员培训心得体会
2013/12/28 职场文书
运动会领导邀请函
2014/01/10 职场文书
保护动物的标语
2014/06/11 职场文书
2015年教师节演讲稿范文
2015/03/19 职场文书
关于公司年会的开幕词
2016/03/04 职场文书
Nginx四层负载均衡的配置指南
2021/06/11 Servers