Python实现蒙特卡洛算法小实验过程详解


Posted in Python onJuly 12, 2019

蒙特卡洛算法思想

蒙特卡洛(Monte Carlo)法是一类随机算法的统称,提出者是大名鼎鼎的数学家冯·诺伊曼,他在20世纪40年代中期用驰名世界的赌城—摩纳哥的蒙特卡洛来命名这种方法。

通俗的解释一下蒙特卡洛算法的思想。假如篮子里有1000个苹果,让你每次闭着眼睛拿1个,挑出最大的。于是你闭着眼睛随机拿了一个,然后再随机拿一个与第一个比,留下大的,再随机拿一个,与前次留下的比较,又可以留下大的……你每拿一次,留下的苹果至少是当前最大的,循环往复这样,拿的次数越多,挑出最大苹果的可能性也就越大,但除非你把1000个苹果都挑一遍,否则你无法肯定最终挑出来的就是最大的一个。也就是说,蒙特卡洛算法是样本越多,越能找到最佳的解决办法,但只是尽量找最好的,不保证一定是最好的。

与它形成对比的是拉斯维加斯算法思想。假如有一把锁,有1000把钥匙进行选择,但只有1把是对的。于是你每次随机拿1把钥匙去试,打不开就再换1把。你试的次数越多,打开最优解的机会就越大,但在打开之前,那些错的钥匙都是没有用的。所以拉斯维加斯算法就是尽量找最好的解决办法,但是不保证能找到。假设试了999次后没有任何一把钥匙能打开锁,真正的钥匙是第1000把,但是样本并没有第1000次选择,那么拉斯维加斯算法就不能找到打开锁的钥匙。

蒙特卡洛和拉斯维加斯本身是两座著名赌城,因为赌博中体现了许多随机算法,所以借此命名。它们只是概括了随机算法的特性,算法本身可能复杂,也可能简单,在这两类随机算法之间的选择,往往受到问题的局限。如果问题要求在有限采样内,必须给出一个解,但不要求是最优解,那就要用蒙特卡罗算法。反之,如果问题要求必须给出最优解,但对采样没有限制,那就要用拉斯维加斯算法。

Python实现蒙特卡洛算法小实验过程详解

蒙特卡洛算法实验

这么看来蒙特卡洛方法的理论支撑其实是概率论或统计学中的大数定律。基本原理简单描述是先大量模拟,然后计算一个事件发生的次数,再通过这个发生次数除以总模拟次数,得到想要的结果。下面我们以三个经典的小实验来学习下蒙特卡洛算法思想。

1.计算圆周率pi(π)值

实验原理:在正方形内部有一个相切的圆,圆面积/正方形面积之比是(PixRxR)/(2Rx2R)= Pi/4。在这个正方形内随机产生n个点,假设点落在圆内的概率为P,那么P=圆面积/正方形面积,则P= Pi/4。如何计算点落在圆内的概率P?可以计算点与中心点的距离,判断是否落在圆的内部,若这些点均匀分布,用M表示落到圆内投点数 , N表示总的投点数,则圆周率Pi=4P=4xM/N。

实验步骤:

(1)将圆心设在原点(0,0),以R为半径形成圆,则圆面积为PixRxR

(2)将该圆外接正方形, 坐标为(-R,-R)(R,-R)(R, R)(-R,R),则该正方形面积为R*R

(3)随即取点(X,Y),使得-R <=X<=R并且-R <=Y<=R,即点在正方形内

(4)通过公式 XxX+YxY<= RxR判断点是否在圆周内(直角三角形边长公式)。

(5)设所有点(也就是实验次数)的个数为N,落在圆内的点(满足步骤4的点)的个数为M,则P=M/N,于是Pi=4xM/N。

(6)运行结果为3.143052

def cal_pai_mc(n=1000000):
 r = 1.0
 a, b = (0.0, 0.0)
 x_neg, x_pos = a - r, a + r
 y_neg, y_pos = b - r, b + r
 m = 0
 for i in range(0, n+1):
 x = random.uniform(x_neg, x_pos)
 y = random.uniform(y_neg, y_pos)
 if x**2 + y**2 <= 1.0:
 m += 1
 return (m / float(n)) * 4

2.计算函数定积分值

实验原理:若要求函数f(x)从a到b的定积分,我们可以用一个比较容易算得面积的矩型包围在函数的积分区间上(假设其面积为Area),定积分值其实就是求曲线下方的面积。随机地向这个矩形框里面投点,统计落在函数f(x)下方的点数量占所有点数量的比例为P,那么就可以据此估算出函数f(x)从a到b的定积分为Area×P。此处我们将a和b设为0和1,函数f(x)=x2。

运行结果为0.333749

def cal_integral_mc(n = 1000000):
 x_min, x_max = 0.0, 1.0
 y_min, y_max = 0.0, 1.0
 m = 0
 for i in range(0, n+1):
 x = random.uniform(x_min, x_max)
 y = random.uniform(y_min, y_max)
 # x*x > y 表示该点位于曲线的下面。
 if x*x > y:
 m += 1
 #所求的积分值即为曲线下方的面积与正方形面积的比
 return m / float(n)

3.计算函数极值,可避免陷入局部极值

实验原理:极值是“极大值” 和 “极小值”的统称。如果一个函数在某点的一个邻域内处处都有确定的值,函数在该点的值大于或等于在该点附近任何其他点的函数值,则称函数在该点的值为函数的“极大值”。如果函数在该点的值小于或等于在该点附近任何其他点的函数值,则称函数在该点 的值为函数的“极小值”。此处在区间[-2,2]上随机生成一个数,求出其对应的y,找出其中最大值认为是函数在[-2,2]上的极大值。

运行结果发现极大值185.1204262706596, 极大值点为1.5144491499169481

def cal_extremum_mc(n = 1000000):
 y_max = 0.0
 x_min, x_max = -2.0, 2.0
 y = lambda x:200*np.sin(x)*np.exp(-0.05*x)#匿名函数
 for i in range(0, n+1):
 x0 = random.uniform(x_min, x_max)
 if y(x0) > y_max:
 y_max = y(x0)
 x_max = x0
 return y_max, x_max

以上三个例子也称为基于蒙特卡洛的投点法,由此得出的值并不是一个精确值,而是一个近似值。当投点的数量越来越大时,这个近似值也越接近真实值。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现无证书加密解密实例
Oct 27 Python
用Python的Django框架编写从Google Adsense中获得报表的应用
Apr 17 Python
pygame游戏之旅 创建游戏窗口界面
Nov 20 Python
Python爬虫文件下载图文教程
Dec 23 Python
Python 把序列转换为元组的函数tuple方法
Jun 27 Python
Python+Selenium使用Page Object实现页面自动化测试
Jul 14 Python
Django 简单实现分页与搜索功能的示例代码
Nov 07 Python
解决Python使用列表副本的问题
Dec 19 Python
使用Python将图片转正方形的两种方法实例代码详解
Apr 29 Python
浅谈opencv自动光学检测、目标分割和检测(连通区域和findContours)
Jun 04 Python
Python classmethod装饰器原理及用法解析
Oct 17 Python
python中pymysql包操作数据库方法
Apr 19 Python
教你如何编写、保存与运行Python程序的方法
Jul 12 #Python
如何不用安装python就能在.NET里调用Python库
Jul 12 #Python
python 执行终端/控制台命令的例子
Jul 12 #Python
python IDLE 背景以及字体大小的修改方法
Jul 12 #Python
Python-Tkinter Text输入内容在界面显示的实例
Jul 12 #Python
Python爬虫抓取技术的一些经验
Jul 12 #Python
python 使用装饰器并记录log的示例代码
Jul 12 #Python
You might like
phpmail类发送邮件函数代码
2012/02/20 PHP
Yii 2中的load()和save()示例详解
2017/08/03 PHP
php中文语义分析实现方法示例
2019/09/28 PHP
理解JavaScript中的事件
2006/09/23 Javascript
jQuery 源代码显示控件 (Ajax加载方式).
2009/05/18 Javascript
一个javascript图片阅览组件
2010/11/09 Javascript
取得窗口大小 兼容所有浏览器的js代码
2011/08/09 Javascript
jquery插件制作 提示框插件实现代码
2012/08/17 Javascript
javascript定义变量时有var和没有var的区别探讨
2014/07/21 Javascript
js实现全国省份城市级联下拉菜单效果代码
2015/09/07 Javascript
js 实现获取name 相同的页面元素并循环遍历的方法
2017/02/14 Javascript
javascript实现非常简单的小数取整功能示例
2017/06/13 Javascript
打字效果动画的4种实现方法(超简单)
2017/10/18 Javascript
VUE项目中加载已保存的笔记实例方法
2019/09/14 Javascript
微信小程序实现页面监听自定义组件的触发事件
2020/11/01 Javascript
vue实现顶部菜单栏
2020/11/08 Javascript
原生js中运算符及流程控制示例详解
2021/01/05 Javascript
[49:08]FNATIC vs Infamous 2019国际邀请赛小组赛 BO2 第二场 8.16
2019/08/18 DOTA
Python实现方便使用的级联进度信息实例
2015/05/05 Python
在Python中执行系统命令的方法示例详解
2017/09/14 Python
对python指数、幂数拟合curve_fit详解
2018/12/29 Python
Django Rest framework解析器和渲染器详解
2019/07/25 Python
python模拟鼠标点击和键盘输入的操作
2019/08/04 Python
Python3.6实现根据电影名称(支持电视剧名称),获取下载链接的方法
2019/08/26 Python
基于Python计算圆周率pi代码实例
2020/03/25 Python
Python使用jpype模块调用jar包过程解析
2020/07/29 Python
CSS实现半透明边框与多重边框的场景分析
2019/11/13 HTML / CSS
办理退休介绍信
2014/01/09 职场文书
机关出纳岗位职责
2014/04/03 职场文书
交通安全寄语大全
2014/04/08 职场文书
2014年中秋寄语
2014/08/11 职场文书
2015年中学元旦晚会活动方案
2014/12/09 职场文书
转让协议书
2015/01/27 职场文书
居委会工作总结2015
2015/05/18 职场文书
laravel ajax curd 搜索登录判断功能的实现
2021/04/17 PHP
Nginx文件已经存在全局反向代理问题排查记录
2022/07/15 Servers