用Python可视化新冠疫情数据


Posted in Python onJanuary 18, 2022

前言

不知道大伙有没有看到过这一句话:“中国(疫苗研发)非常困难,因为在中国我们没有办法做第三期临床试验,因为没有病人了。”这句话是中国工程院院士钟南山在上海科技大学2021届毕业典礼上提出的。这句话在全网流传,被广大网友称之为“凡尔赛”发言。

今天让我们用数据来看看这句话是不是“凡尔赛”本赛。在开始之前我们先来说说今天要用到的python库吧!

1.数据获取部分

requests lxml json openpyxl

2.数据可视化部分

pandas  pyecharts(可视化库)

以上的库都可以通过在线下载:

pip instll xx

ps:如果下载速度太慢的话也可以用国内镜像,使用命令,例如:

pip install xx(库名) -i https://pypi.tuna.tsinghua.edu.cn/simple gevent(清华镜像)

现在一起进入今天的代码部分吧!!!

数据获取

目标地址:

https://voice.baidu.com/act/newpneumonia/newpneumonia

进入目标地址我们可以看到如下所示:

用Python可视化新冠疫情数据

现在让我们一起去解析网页结构找到我们要爬取到的数据如下所示:

用Python可视化新冠疫情数据

现在我们找到想要的页面数据接下来就是通过Python来获取这些数据了,上代码:

1 import requests
2 from lxml import etree
3 import json
4 import openpyxl
5 
6 #通用爬虫
7 url = 'https://voice.baidu.com/act/newpneumonia/newpneumonia'
8 headers = {
9    "User-Agent": ".....(换成自己的)"
10 }
11 response = requests.get(url=url,headers=headers).text
12 #在使用xpath的时候要用树形态
13 html = etree.HTML(response)
14 #用xpath来获取我们之前找到的页面json数据  并打印看看
15 json_text = html.xpath('//script[@type="application/json"]/text()')
16 json_text = json_text[0]
17 print(json_text)
之后我们来解析一下json数据,上代码:
1 #用python本地自带的库转换一下json数据
2 result = json.loads(json_text)
3 print(result)
4 #通过打印出转换的对象我们可以看到我们要的数据都要key为component对应5 的值之下  所以现在我们将值拿出来
6 result = result["component"]
7 #再次打印看看结果
8 print(result)
9 获取国内当前数据
10 result = result[0]['caseList']
11 print(result)
接着我们将获取到的数据保存到excel中,上代码:
1 #创建工作簿
2 wb = openpyxl.Workbook()
 3 创建工作表
4 ws = wb.active
5 设置表的标题
6 ws.title = "国内疫情"
7  写入表头
8 ws.append(["省份","累计确诊","死亡","治愈"])
9 #获取各省份的数据并写入
10 for line in result:
11     line_name = [line["area"],line["confirmed"],line["died"],line["crued"]]
12     for ele in line_name:
13         if ele == '':
14             ele = 0
15     ws.append(line_name)
16 #保存到excel中
17 wb.save('./china.xlsx')
最后我们查看一下获取到的数据是什么样的,如图:

用Python可视化新冠疫情数据

emmmm,终于我们把数据获取部分完成了,第二部分的数据可视化来了!!!

数据可视化

这次我们用到的库是pyecharts里面的Map,我们先展示一下本次可视化用到的库

1 #可视化部分
2 import pandas  as pd
3 from pyecharts.charts import Map,Page
4 from pyecharts import options as opts
首先我们要先通过pandas库来获取到刚才我们爬取到的数据,上代码:
1  设置列对齐
2 pd.set_option('display.unicode.ambiguous_as_wide', True)
3  pd.set_option('display.unicode.east_asian_width', True)
4   打开文件
5 df = pd.read_excel('china.xlsx')
6 对省份进行统计
7  data2 = df['省份']
8 data2_list = list(data2)
9 data3 = df['累计确诊']
10  data3_list = list(data3)
11  data4 = df['死亡']
12  data4_list = list(data4)
13 data5 = df ['治愈']
14 data5_list = list(data5)

接着我们来做数据可视化,将在我国地图上的各个省份显示出对应的数值

我们以疫情发生以来治愈数为例,上代码:

1 c = (
2    Map()
3       .add("治愈", [list(z) for z in zip(data2_list, data5_list)], "china")
4      .set_global_opts(
5         title_opts=opts.TitleOpts(),
6         visualmap_opts=opts.VisualMapOpts(max_=200),
7     )
8 )
9 c.render()

用Python可视化新冠疫情数据

当然仅仅一个治愈情况当然说明不了什么,所以我们将三种情况都以这种形式显示出来,上代码:

1 a = (
2     Map()
3     .add("累计确诊", [list(z) for z in zip(data2_list, data3_list)], "china")
4        .set_global_opts(
5       title_opts=opts.TitleOpts(),
6        visualmap_opts=opts.VisualMapOpts(max_=200),
7    )
8 )
9 
10 b = (
11     Map()
12       .add("死亡", [list(z) for z in zip(data2_list, data4_list)], "china")
13       .set_global_opts(
14         title_opts=opts.TitleOpts(),
15         visualmap_opts=opts.VisualMapOpts(max_=200),
16     )
17 )
18 
19 c = (
20     Map()
21        .add("治愈", [list(z) for z in zip(data2_list, data5_list)], "china")
22         .set_global_opts(
23      title_opts=opts.TitleOpts(),
24       visualmap_opts=opts.VisualMapOpts(max_=200),
25     )
26 )
27 
28 page = Page(layout=Page.DraggablePageLayout)
29 page.add(
30     a,
31     b,
32     c,
33 )
34  先生成render.html文件
35 page.render()

用Python可视化新冠疫情数据

当然如果是直接运行代码的话展现出来的地图不是这样的,这个是通过后期的排版来完成的。那么在最后我们来说说是怎么排版的吧。

首先你先将上面的代码运行之后会产生一个render.html的文件然后你打开文件之后可以调整整个页面的布局,根据自己的喜欢来调整,接着点击左上角的“Save Config”将这个json文件保存到跟render.html这个文件同一个路径之下,最后运行一下代码:

1 #完成上一步之后把 page.render()这行注释掉
2 #然后循行这下面
3 Page.save_resize_html("render.html",
4     cfg_file="chart_config.json",
5     dest="my_test.html")

这样以后会产生一个my_test.html这个文件就是我们上面展示的那样啦。以上就是我们这次的结果。从数据的获取到数据可视化,怎么说呢pyecharts还具有其他强大的可视化功能。

python的特色

• 简单
• 易于学习
• 自由开放
• 跨平台
• 可嵌入
• 丰富的库

总结

到此这篇关于用Python可视化新冠疫情数据的文章就介绍到这了,更多相关Python疫情数据可视化内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python中使用scapy模拟数据包实现arp攻击、dns放大攻击例子
Oct 23 Python
解决python3 urllib中urlopen报错的问题
Mar 25 Python
Python入门_浅谈for循环、while循环
May 16 Python
基于Python3 逗号代码 和 字符图网格(详谈)
Jun 22 Python
使用python实现接口的方法
Jul 07 Python
Python实现将文本生成二维码的方法示例
Jul 18 Python
Python实现的矩阵类实例
Aug 22 Python
Python实现输出程序执行进度百分比的方法
Sep 16 Python
python多线程案例之多任务copy文件完整实例
Oct 29 Python
Python Tensor FLow简单使用方法实例详解
Jan 14 Python
Pycharm和Idea支持的vim插件的方法
Feb 21 Python
Python使用20行代码实现微信聊天机器人
Jun 05 Python
Python机器学习应用之基于线性判别模型的分类篇详解
68行Python代码实现带难度升级的贪吃蛇
Jan 18 #Python
如何利用Python实现n*n螺旋矩阵
Jan 18 #Python
聊聊Python String型列表求最值的问题
Jan 18 #Python
Python的三个重要函数详解
Jan 18 #Python
python多线程方法详解
Jan 18 #Python
用Python生成会跳舞的美女
You might like
分页显示Oracle数据库记录的类之一
2006/10/09 PHP
php数字转汉字代码(算法)
2011/10/08 PHP
php求两个目录的相对路径示例(php获取相对路径)
2014/03/27 PHP
使用PHP和JavaScript判断请求是否来自微信内浏览器
2015/08/18 PHP
在PHP中使用FastCGI解析漏洞及修复方案
2015/11/10 PHP
php验证码生成代码
2015/11/11 PHP
PHP copy函数使用案例代码解析
2020/09/01 PHP
js的写法基础分析
2011/01/17 Javascript
JS实现网页Div层Clone拖拽效果
2015/09/26 Javascript
jquery捕捉回车键及获取checkbox值与异步请求的方法
2015/12/24 Javascript
JavaScript如何实现在文本框(密码框)输入提示语
2015/12/25 Javascript
Bootstrap Table使用方法详解
2016/08/01 Javascript
谈谈JavaScript数组常用方法总结
2017/01/24 Javascript
详解webpack 配合babel 将es6转成es5 超简单实例
2017/05/02 Javascript
vue跨域解决方法
2017/10/15 Javascript
vue 页面加载进度条组件实例
2018/02/05 Javascript
vue 父组件中调用子组件函数的方法
2019/06/06 Javascript
ES6学习笔记之let与const用法实例分析
2020/01/22 Javascript
解决antd 表单设置默认值initialValue后验证失效的问题
2020/11/02 Javascript
[01:20:05]DOTA2-DPC中国联赛 正赛 Ehome vs VG BO3 第二场 2月5日
2021/03/11 DOTA
探究数组排序提升Python程序的循环的运行效率的原因
2015/04/01 Python
Python数据结构与算法之常见的分配排序法示例【桶排序与基数排序】
2017/12/15 Python
教你用Python写安卓游戏外挂
2018/01/11 Python
Python实现的径向基(RBF)神经网络示例
2018/02/06 Python
python利用多种方式来统计词频(单词个数)
2019/05/27 Python
Python多进程入门、分布式进程数据共享实例详解
2019/06/03 Python
pandas 数据索引与选取的实现方法
2019/06/21 Python
python操作excel让工作自动化
2019/08/09 Python
pycharm 对代码做静态检查操作
2020/06/09 Python
CSS3简单实现照片墙
2014/12/12 HTML / CSS
html5超简单的localStorage实现记住密码的功能实现
2017/09/07 HTML / CSS
Rosetta Stone官方网站:语言学习
2019/01/05 全球购物
德国户外装备、登山运动和攀岩商店:tapir store
2020/02/12 全球购物
团日活动策划书
2014/02/01 职场文书
装饰活动策划方案
2014/02/11 职场文书
移除Selenium中window.navigator.webdriver值
2022/06/10 Python