Python实现的径向基(RBF)神经网络示例


Posted in Python onFebruary 06, 2018

本文实例讲述了Python实现的径向基(RBF)神经网络。分享给大家供大家参考,具体如下:

from numpy import array, append, vstack, transpose, reshape, \
         dot, true_divide, mean, exp, sqrt, log, \
         loadtxt, savetxt, zeros, frombuffer
from numpy.linalg import norm, lstsq
from multiprocessing import Process, Array
from random import sample
from time import time
from sys import stdout
from ctypes import c_double
from h5py import File
def metrics(a, b):
  return norm(a - b)
def gaussian (x, mu, sigma):
  return exp(- metrics(mu, x)**2 / (2 * sigma**2))
def multiQuadric (x, mu, sigma):
  return pow(metrics(mu,x)**2 + sigma**2, 0.5)
def invMultiQuadric (x, mu, sigma):
  return pow(metrics(mu,x)**2 + sigma**2, -0.5)
def plateSpine (x,mu):
  r = metrics(mu,x)
  return (r**2) * log(r)
class Rbf:
  def __init__(self, prefix = 'rbf', workers = 4, extra_neurons = 0, from_files = None):
    self.prefix = prefix
    self.workers = workers
    self.extra_neurons = extra_neurons
    # Import partial model
    if from_files is not None:
      w_handle = self.w_handle = File(from_files['w'], 'r')
      mu_handle = self.mu_handle = File(from_files['mu'], 'r')
      sigma_handle = self.sigma_handle = File(from_files['sigma'], 'r')
      self.w = w_handle['w']
      self.mu = mu_handle['mu']
      self.sigmas = sigma_handle['sigmas']
      self.neurons = self.sigmas.shape[0]
  def _calculate_error(self, y):
    self.error = mean(abs(self.os - y))
    self.relative_error = true_divide(self.error, mean(y))
  def _generate_mu(self, x):
    n = self.n
    extra_neurons = self.extra_neurons
    # TODO: Make reusable
    mu_clusters = loadtxt('clusters100.txt', delimiter='\t')
    mu_indices = sample(range(n), extra_neurons)
    mu_new = x[mu_indices, :]
    mu = vstack((mu_clusters, mu_new))
    return mu
  def _calculate_sigmas(self):
    neurons = self.neurons
    mu = self.mu
    sigmas = zeros((neurons, ))
    for i in xrange(neurons):
      dists = [0 for _ in xrange(neurons)]
      for j in xrange(neurons):
        if i != j:
          dists[j] = metrics(mu[i], mu[j])
      sigmas[i] = mean(dists)* 2
           # max(dists) / sqrt(neurons * 2))
    return sigmas
  def _calculate_phi(self, x):
    C = self.workers
    neurons = self.neurons
    mu = self.mu
    sigmas = self.sigmas
    phi = self.phi = None
    n = self.n
    def heavy_lifting(c, phi):
      s = jobs[c][1] - jobs[c][0]
      for k, i in enumerate(xrange(jobs[c][0], jobs[c][1])):
        for j in xrange(neurons):
          # phi[i, j] = metrics(x[i,:], mu[j])**3)
          # phi[i, j] = plateSpine(x[i,:], mu[j]))
          # phi[i, j] = invMultiQuadric(x[i,:], mu[j], sigmas[j]))
          phi[i, j] = multiQuadric(x[i,:], mu[j], sigmas[j])
          # phi[i, j] = gaussian(x[i,:], mu[j], sigmas[j]))
        if k % 1000 == 0:
          percent = true_divide(k, s)*100
          print(c, ': {:2.2f}%'.format(percent))
      print(c, ': Done')
    # distributing the work between 4 workers
    shared_array = Array(c_double, n * neurons)
    phi = frombuffer(shared_array.get_obj())
    phi = phi.reshape((n, neurons))
    jobs = []
    workers = []
    p = n / C
    m = n % C
    for c in range(C):
      jobs.append((c*p, (c+1)*p + (m if c == C-1 else 0)))
      worker = Process(target = heavy_lifting, args = (c, phi))
      workers.append(worker)
      worker.start()
    for worker in workers:
      worker.join()
    return phi
  def _do_algebra(self, y):
    phi = self.phi
    w = lstsq(phi, y)[0]
    os = dot(w, transpose(phi))
    return w, os
    # Saving to HDF5
    os_h5 = os_handle.create_dataset('os', data = os)
  def train(self, x, y):
    self.n = x.shape[0]
    ## Initialize HDF5 caches
    prefix = self.prefix
    postfix = str(self.n) + '-' + str(self.extra_neurons) + '.hdf5'
    name_template = prefix + '-{}-' + postfix
    phi_handle = self.phi_handle = File(name_template.format('phi'), 'w')
    os_handle = self.w_handle = File(name_template.format('os'), 'w')
    w_handle = self.w_handle = File(name_template.format('w'), 'w')
    mu_handle = self.mu_handle = File(name_template.format('mu'), 'w')
    sigma_handle = self.sigma_handle = File(name_template.format('sigma'), 'w')
    ## Mu generation
    mu = self.mu = self._generate_mu(x)
    self.neurons = mu.shape[0]
    print('({} neurons)'.format(self.neurons))
    # Save to HDF5
    mu_h5 = mu_handle.create_dataset('mu', data = mu)
    ## Sigma calculation
    print('Calculating Sigma...')
    sigmas = self.sigmas = self._calculate_sigmas()
    # Save to HDF5
    sigmas_h5 = sigma_handle.create_dataset('sigmas', data = sigmas)
    print('Done')
    ## Phi calculation
    print('Calculating Phi...')
    phi = self.phi = self._calculate_phi(x)
    print('Done')
    # Saving to HDF5
    print('Serializing...')
    phi_h5 = phi_handle.create_dataset('phi', data = phi)
    del phi
    self.phi = phi_h5
    print('Done')
    ## Algebra
    print('Doing final algebra...')
    w, os = self.w, _ = self._do_algebra(y)
    # Saving to HDF5
    w_h5 = w_handle.create_dataset('w', data = w)
    os_h5 = os_handle.create_dataset('os', data = os)
    ## Calculate error
    self._calculate_error(y)
    print('Done')
  def predict(self, test_data):
    mu = self.mu = self.mu.value
    sigmas = self.sigmas = self.sigmas.value
    w = self.w = self.w.value
    print('Calculating phi for test data...')
    phi = self._calculate_phi(test_data)
    os = dot(w, transpose(phi))
    savetxt('iok3834.txt', os, delimiter='\n')
    return os
  @property
  def summary(self):
    return '\n'.join( \
      ['-----------------',
      'Training set size: {}'.format(self.n),
      'Hidden layer size: {}'.format(self.neurons),
      '-----------------',
      'Absolute error  : {:02.2f}'.format(self.error),
      'Relative error  : {:02.2f}%'.format(self.relative_error * 100)])
def predict(test_data):
  mu = File('rbf-mu-212243-2400.hdf5', 'r')['mu'].value
  sigmas = File('rbf-sigma-212243-2400.hdf5', 'r')['sigmas'].value
  w = File('rbf-w-212243-2400.hdf5', 'r')['w'].value
  n = test_data.shape[0]
  neur = mu.shape[0]
  mu = transpose(mu)
  mu.reshape((n, neur))
  phi = zeros((n, neur))
  for i in range(n):
    for j in range(neur):
      phi[i, j] = multiQuadric(test_data[i,:], mu[j], sigmas[j])
  os = dot(w, transpose(phi))
  savetxt('iok3834.txt', os, delimiter='\n')
  return os

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
简单介绍Python中的JSON模块
Apr 08 Python
快速查询Python文档方法分享
Dec 27 Python
TensorFlow中权重的随机初始化的方法
Feb 11 Python
python3实现SMTP发送邮件详细教程
Jun 19 Python
Python走楼梯问题解决方法示例
Jul 25 Python
python3 面向对象__类的内置属性与方法的实例代码
Nov 09 Python
pandas通过索引进行排序的示例
Nov 16 Python
使用python socket分发大文件的实现方法
Jul 08 Python
python实现一行输入多个值和一行输出多个值的例子
Jul 16 Python
Tensorflow 实现分批量读取数据
Jan 04 Python
Selenium启动Chrome时配置选项详解
Mar 18 Python
上手简单,功能强大的Python爬虫框架——feapder
Apr 27 Python
python实现淘宝秒杀聚划算抢购自动提醒源码
Jun 23 #Python
初探TensorFLow从文件读取图片的四种方式
Feb 06 #Python
用十张图详解TensorFlow数据读取机制(附代码)
Feb 06 #Python
Python实现matplotlib显示中文的方法详解
Feb 06 #Python
Python实现自动上京东抢手机
Feb 06 #Python
Python获取指定文件夹下的文件名的方法
Feb 06 #Python
TensorFlow如何实现反向传播
Feb 06 #Python
You might like
一个好用的分页函数
2006/11/16 PHP
新浪SAE搭建PHP项目教程
2015/01/28 PHP
php实现两个数组相加的方法
2015/02/17 PHP
php函数传值的引用传递注意事项分析
2016/06/25 PHP
php处理复杂xml数据示例
2016/07/11 PHP
phpfpm的作用和用法
2019/10/10 PHP
两个比较有用的Javascript工具函数代码
2010/02/17 Javascript
jquery offset函数应用实例
2012/11/14 Javascript
使用jquery.upload.js实现异步上传示例代码
2014/07/29 Javascript
jquery实现右键菜单插件
2015/03/29 Javascript
JQuery记住用户名密码实现下次自动登录功能
2015/04/27 Javascript
jQuery左右滚动支持图片放大缩略图图片轮播代码分享
2015/08/26 Javascript
jQuery实现仿新浪微博浮动的消息提示框(可智能定位)
2015/10/10 Javascript
浅谈DOCTYPE对$(window).height()取值的影响
2016/07/21 Javascript
解决vue+element 键盘回车事件导致页面刷新的问题
2018/08/25 Javascript
在Vue-cli里应用Vuex的state和mutations方法
2018/09/16 Javascript
vue中导出Excel表格的实现代码
2018/10/18 Javascript
vue使用exif获取图片经纬度的示例代码
2020/12/11 Vue.js
windows下ipython的安装与使用详解
2016/10/20 Python
python difflib模块示例讲解
2017/09/13 Python
基于腾讯云服务器部署微信小程序后台服务(Python+Django)
2019/05/08 Python
对python中 math模块下 atan 和 atan2的区别详解
2020/01/17 Python
Python中pyecharts安装及安装失败的解决方法
2020/02/18 Python
python正则表达式实例代码
2020/03/03 Python
宝塔面板成功部署Django项目流程(图文)
2020/06/22 Python
Shopee印度尼西亚:东南亚与台湾市场最大电商平台
2018/06/17 全球购物
法国设计制造的扫帚和刷子:Andrée Jardin
2018/12/06 全球购物
结构工程个人自荐信范文
2013/11/30 职场文书
学校门卫管理制度
2014/01/30 职场文书
财产公证书格式
2014/04/10 职场文书
毕业设计说明书
2014/05/07 职场文书
反四风对照检查材料
2014/09/22 职场文书
领导干部群众路线教育实践活动个人对照检查材料
2014/09/23 职场文书
2014年部门工作总结
2014/11/12 职场文书
平安家庭事迹材料
2014/12/20 职场文书
处罚决定书范文
2015/06/24 职场文书