Python如何把Spark数据写入ElasticSearch


Posted in Python onApril 18, 2020

这里以将Apache的日志写入到ElasticSearch为例,来演示一下如何使用Python将Spark数据导入到ES中。

实际工作中,由于数据与使用框架或技术的复杂性,数据的写入变得比较复杂,在这里我们简单演示一下。

如果使用Scala或Java的话,Spark提供自带了支持写入ES的支持库,但Python不支持。所以首先你需要去这里下载依赖的ES官方开发的依赖包包。

下载完成后,放在本地目录,以下面命令方式启动pyspark:

pyspark --jars elasticsearch-hadoop-6.4.1.jar

如果你想pyspark使用Python3,请设置环境变量:

export PYSPARK_PYTHON=/usr/bin/python3
理解如何写入ES的关键是要明白,ES是一个JSON格式的数据库,它有一个必须的要求。数据格式必须采用以下格式

{ "id: { the rest of your json}}

往下会展示如何转换成这种格式。

解析Apache日志文件
我们将Apache的日志文件读入,构建Spark RDD。然后我们写一个parse()函数用正则表达式处理每条日志,提取我们需要的字

rdd = sc.textFile("/home/ubuntu/walker/apache_logs")
regex='^(\S+) (\S+) (\S+) \[([\w:/]+\s[+\-]\d{4})\] "(\S+)\s?(\S+)?\s?(\S+)?" (\d{3}|-) (\d+|-)\s?"?([^"]*)"?\s?"?([^"]*)?"?$'

p=re.compile(regex)
def parse(str):
  s=p.match(str)
  d = {}
  d['ip']=s.group(1)
  d['date']=s.group(4)
  d['operation']=s.group(5)
  d['uri']=s.group(6)
  return d

换句话说,我们刚开始从日志文件读入RDD的数据类似如下:

['83.149.9.216 - - [17/May/2015:10:05:03 +0000] "GET /presentations/logstash-monitorama-2013/images/kibana-search.png HTTP/1.1" 200 203023 "http://semicomplete.com/presentations/logstash-monitorama-2013/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77 Safari/537.36"']

然后我们使用map函数转换每条记录:

rdd2 = rdd.map(parse)

rdd2.take(1)

[{'date': '17/May/2015:10:05:03 +0000', 'ip': '83.149.9.216', 'operation': 'GET', 'uri': '/presentations/logstash-monitorama-2013/images/kibana-search.png'}]

现在看起来像JSON,但并不是JSON字符串,我们需要使用json.dumps将dict对象转换。

我们同时增加一个doc_id字段作为整个JSON的ID。在配置ES中我们增加如下配置“es.mapping.id”: “doc_id”告诉ES我们将这个字段作为ID。

这里我们使用SHA算法,将这个JSON字符串作为参数,得到一个唯一ID。
计算结果类似如下,可以看到ID是一个很长的SHA数值。

rdd3.take(1)

[('a5b086b04e1cc45fb4a19e2a641bf99ea3a378599ef62ba12563b75c', '{"date": "17/May/2015:10:05:03 +0000", "ip": "83.149.9.216", "operation": "GET", "doc_id": "a5b086b04e1cc45fb4a19e2a641bf99ea3a378599ef62ba12563b75c", "uri": "/presentations/logstash-monitorama-2013/images/kibana-search.png"}')]

现在我们需要制定ES配置,比较重要的两项是:

  • “es.resource” : ‘walker/apache': "walker"是索引,apache是类型,两者一般合称索引
  • “es.mapping.id”: “doc_id”: 告诉ES那个字段作为整个文档的ID,也就是查询结果中的_id

其他的配置自己去探索。

然后我们使用saveAsNewAPIHadoopFile()将RDD写入到ES。这部分代码对于所有的ES都是一样的,比较固定,不需要理解每一个细节

es_write_conf = {
    "es.nodes" : "localhost",
    "es.port" : "9200",
    "es.resource" : 'walker/apache',
    "es.input.json": "yes",
    "es.mapping.id": "doc_id"
  }
    
rdd3.saveAsNewAPIHadoopFile(
    path='-',
   outputFormatClass="org.elasticsearch.hadoop.mr.EsOutputFormat",    keyClass="org.apache.hadoop.io.NullWritable",
    valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
    conf=es_write_conf)

rdd3 = rdd2.map(addID)

def addId(data):
  j=json.dumps(data).encode('ascii', 'ignore')
  data['doc_id'] = hashlib.sha224(j).hexdigest()
  return (data['doc_id'], json.dumps(data))

最后我们可以使用curl进行查询

curl http://localhost:9200s/walker/apache/_search?pretty=true&?q=*
{
    "_index" : "walker",
    "_type" : "apache",
    "_id" : "227e977849bfd5f8d1fca69b04f7a766560745c6cb3712c106d590c2",
    "_score" : 1.0,
    "_source" : {
     "date" : "17/May/2015:10:05:32 +0000",
     "ip" : "91.177.205.119",
     "operation" : "GET",
     "doc_id" : "227e977849bfd5f8d1fca69b04f7a766560745c6cb3712c106d590c2",
     "uri" : "/favicon.ico"
    }

如下是所有代码:

import json
import hashlib
import re

def addId(data):
  j=json.dumps(data).encode('ascii', 'ignore')
  data['doc_id'] = hashlib.sha224(j).hexdigest()
  return (data['doc_id'], json.dumps(data))

def parse(str):
  s=p.match(str)
  d = {}
  d['ip']=s.group(1)
  d['date']=s.group(4)
  d['operation']=s.group(5)
  d['uri']=s.group(6)
  return d  

regex='^(\S+) (\S+) (\S+) \[([\w:/]+\s[+\-]\d{4})\] "(\S+)\s?(\S+)?\s?(\S+)?" (\d{3}|-) (\d+|-)\s?"?([^"]*)"?\s?"?([^"]*)?"?$'

p=re.compile(regex)

rdd = sc.textFile("/home/ubuntu/walker/apache_logs")

rdd2 = rdd.map(parse)

rdd3 = rdd2.map(addID)

es_write_conf = {
    "es.nodes" : "localhost",
    "es.port" : "9200",
    "es.resource" : 'walker/apache',
    "es.input.json": "yes",
    "es.mapping.id": "doc_id"
  }
   
rdd3.saveAsNewAPIHadoopFile(
    path='-',
   outputFormatClass="org.elasticsearch.hadoop.mr.EsOutputFormat",    keyClass="org.apache.hadoop.io.NullWritable",
    valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
    conf=es_write_conf)

也可以这么封装,其实原理是一样的

import hashlib
import json
from pyspark import Sparkcontext

def make_md5(line):
  md5_obj=hashlib.md5()
  md5_obj.encode(line)
  return md5_obj.hexdigest()

def parse(line):
  dic={}
  l = line.split('\t')
  doc_id=make_md5(line)
  dic['name']=l[1]
  dic['age'] =l[2]
  dic['doc_id']=doc_id
  return dic  #记得这边返回的是字典类型的,在写入es之前要记得dumps

def saveData2es(pdd, es_host, port,index, index_type, key):
  """
  把saprk的运行结果写入es
  :param pdd: 一个rdd类型的数据
  :param es_host: 要写es的ip
  :param index: 要写入数据的索引
  :param index_type: 索引的类型
  :param key: 指定文档的id,就是要以文档的那个字段作为_id
  :return:
  """
  #实例es客户端记得单例模式
  if es.exist.index(index):
    es.index.create(index, 'spo')
  es_write_conf = {
    "es.nodes": es_host,
    "es.port": port,
    "es.resource": index/index_type,
    "es.input.json": "yes",
    "es.mapping.id": key
  }

  (pdd.map(lambda _dic: ('', json.dumps(_dic))))  #这百年是为把这个数据构造成元组格式,如果传进来的_dic是字典则需要jdumps,如果传进来之前就已经dumps,这便就不需要dumps了
  .saveAsNewAPIHadoopFile(
    path='-',
    outputFormatClass="org.elasticsearch.hadoop.mr.EsOutputFormat", keyClass="org.apache.hadoop.io.NullWritable",
    valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
    conf=es_write_conf)
  )
if __name__ == '__main__':
  #实例化sp对象
  sc=Sparkcontext()
  #文件中的呢内容一行一行用sc的读取出来
  json_text=sc.textFile('./1.txt')
  #进行转换
  json_data=json_text.map(lambda line:parse(line))

  saveData2es(json_data,'127.0.01','9200','index_test','index_type','doc_id')

  sc.stop()

看到了把,面那个例子在写入es之前加了一个id,返回一个元组格式的,现在这个封装指定_id就会比较灵活了

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python性能提升之延迟初始化
Dec 04 Python
python递归查询菜单并转换成json实例
Mar 27 Python
python使用threading获取线程函数返回值的实现方法
Nov 15 Python
Python中的heapq模块源码详析
Jan 08 Python
详解Python的三种可变参数
May 08 Python
numpy下的flatten()函数用法详解
May 27 Python
Pytorch 保存模型生成图片方式
Jan 10 Python
使用Python合成图片的实现代码(图片添加个性化文本,图片上叠加其他图片)
Apr 30 Python
python如何编写win程序
Jun 08 Python
python的launcher用法知识点总结
Aug 07 Python
python3从网络摄像机解析mjpeg http流的示例
Nov 13 Python
Python matplotlib绘制条形统计图 处理多个实验多组观测值
Apr 21 Python
Python virtualenv虚拟环境实现过程解析
Apr 18 #Python
python实现贪吃蛇双人大战
Apr 18 #Python
Python的in,is和id函数代码实例
Apr 18 #Python
Python json读写方式和字典相互转化
Apr 18 #Python
Python figure参数及subplot子图绘制代码
Apr 18 #Python
Python数组拼接np.concatenate实现过程
Apr 18 #Python
Python稀疏矩阵及参数保存代码实现
Apr 18 #Python
You might like
php 将excel导入mysql
2009/11/09 PHP
TMDPHP 模板引擎使用教程
2012/03/13 PHP
php冒泡排序与快速排序实例详解
2015/12/07 PHP
java模拟PHP的pack和unpack类
2016/04/13 PHP
基于thinkphp6.0的success、error实现方法
2019/11/05 PHP
extJs 常用到的增,删,改,查操作代码
2009/12/28 Javascript
一次失败的jQuery优化尝试小结
2011/02/06 Javascript
jQuery之按钮组件的深入解析
2013/06/19 Javascript
jQuery中size()方法用法实例
2014/12/27 Javascript
JavaScript阻止浏览器返回按钮的方法
2015/03/18 Javascript
基于javascript实现checkbox复选框实例代码
2016/01/28 Javascript
JS动态改变浏览器标题的方法
2016/04/06 Javascript
深入理解jQuery 事件处理
2016/06/14 Javascript
jquery.validate[.unobtrusive]和Bootstrap实现tooltip错误提示问题分析
2016/10/30 Javascript
js 博客内容进度插件详解
2017/02/19 Javascript
JS实现小球的弹性碰撞效果
2017/11/11 Javascript
详解Angular调试技巧之报错404(not found)
2018/01/31 Javascript
nodejs更改项目端口号的方法
2018/05/13 NodeJs
小程序云开发部署攻略(图文教程)
2018/10/30 Javascript
基于js Canvas实现二次贝塞尔曲线
2018/12/25 Javascript
一次让你了解全部JavaScript的作用域
2019/06/24 Javascript
如何自定义微信小程序tabbar上边框的颜色
2019/07/09 Javascript
js实现简单的打印表格
2020/01/15 Javascript
基于p5.js 2D图像接口的扩展(交互实现)
2020/11/30 Javascript
Vue实现随机验证码功能
2020/12/29 Vue.js
[50:50]完美世界DOTA2联赛PWL S3 INK ICE vs DLG 第一场 12.20
2020/12/23 DOTA
Python使用迭代器捕获Generator返回值的方法
2017/04/05 Python
Keras实现将两个模型连接到一起
2020/05/23 Python
使用keras内置的模型进行图片预测实例
2020/06/17 Python
芝加哥牛排公司:Chicago Steak Company
2018/10/31 全球购物
2014大学生全国两会学习心得体会
2014/03/13 职场文书
企业党员公开承诺书
2014/03/26 职场文书
个人工作主要事迹
2014/05/08 职场文书
公司劳动纪律管理制度
2015/08/04 职场文书
Python中Permission denied的解决方案
2021/04/02 Python
MySql如何将查询的出来的字段进行转换
2022/06/14 MySQL