python networkx 包绘制复杂网络关系图的实现


Posted in Python onJuly 10, 2019

1. 创建一个图

import networkx as nx
g = nx.Graph()
g.clear() #将图上元素清空

所有的构建复杂网络图的操作基本都围绕这个g来执行。

2. 节点

节点的名字可以是任意数据类型的,添加一个节点是

g.add_node(1)
g.add_node("a")
g.add_node("spam")

添加一组节点,就是提前构建好了一个节点列表,将其一次性加进来,这跟后边加边的操作是具有一致性的。

g.add_nodes_from([2,3])
or 
a = [2,3]
g.add_nodes_from(a)

这里需要值得注意的一点是,对于add_node加一个点来说,字符串是只添加了名字为整个字符串的节点。但是对于

add_nodes_from加一组点来说,字符串表示了添加了每一个字符都代表的多个节点,exp:
g.add_node("spam") #添加了一个名为spam的节点
g.add_nodes_from("spam") #添加了4个节点,名为s,p,a,m
g.nodes() #可以将以上5个节点打印出来看看

加一组从0开始的连续数字的节点

H = nx.path_graph(10)
g.add_nodes_from(H) #将0~9加入了节点
#但请勿使用g.add_node(H)

删除节点

与添加节点同理

g.remove_node(node_name)
g.remove_nodes_from(nodes_list)

3. 边

边是由对应节点的名字的元组组成,加一条边

g.add_edge(1,2)
e = (2,3)
g.add_edge(*e) #直接g.add_edge(e)数据类型不对,*是将元组中的元素取出

加一组边

g.add_edges_from([(1,2),(1,3)])
g.add_edges_from([("a","spam") , ("a",2)])

通过nx.path_graph(n)加一系列连续的边

n = 10
H = nx.path_graph(n)
g.add_edges_from(H.edges()) #添加了0~1,1~2 ... n-2~n-1这样的n-1条连续的边

删除边

同理添加边的操作

g.remove_edge(edge)
g.remove_edges_from(edges_list)

4. 查看图上点和边的信息

g.number_of_nodes() #查看点的数量
g.number_of_edges() #查看边的数量
g.nodes() #返回所有点的信息(list)
g.edges() #返回所有边的信息(list中每个元素是一个tuple)
g.neighbors(1) #所有与1这个点相连的点的信息以列表的形式返回
g[1] #查看所有与1相连的边的属性,格式输出:{0: {}, 2: {}} 表示1和0相连的边没有设置任何属性(也就是{}没有信息),同理1和2相连的边也没有任何属性

method explanation
Graph.has_node(n) Return True if the graph contains the node n.
Graph.__contains__(n) Return True if n is a node, False otherwise.
Graph.has_edge(u, v) Return True if the edge (u,v) is in the graph.
Graph.order() Return the number of nodes in the graph.
Graph.number_of_nodes() Return the number of nodes in the graph.
Graph.__len__() Return the number of nodes.
Graph.degree([nbunch, weight]) Return the degree of a node or nodes.
Graph.degree_iter([nbunch, weight]) Return an iterator for (node, degree).
Graph.size([weight]) Return the number of edges.
Graph.number_of_edges([u, v]) Return the number of edges between two nodes.
Graph.nodes_with_selfloops() Return a list of nodes with self loops.
Graph.selfloop_edges([data, default]) Return a list of selfloop edges.
Graph.number_of_selfloops() Return the number of selfloop edges.

5. 图的属性设置

为图赋予初始属性

g = nx.Graph(day="Monday") 
g.graph # {'day': 'Monday'}

修改图的属性

g.graph['day'] = 'Tuesday'
g.graph # {'day': 'Tuesday'}

6. 点的属性设置

g.add_node('benz', money=10000, fuel="1.5L")
print g.node['benz'] # {'fuel': '1.5L', 'money': 10000}
print g.node['benz']['money'] # 10000
print g.nodes(data=True) # data默认false就是不输出属性信息,修改为true,会将节点名字和属性信息一起输出

7. 边的属性设置

通过上文中对g[1]的介绍可知边的属性在{}中显示出来,我们可以根据这个秀改变的属性

g.clear()
n = 10
H = nx.path_graph(n)
g.add_nodes_from(H)
g.add_edges_from(H.edges())
g[1][2]['color'] = 'blue'

g.add_edge(1, 2, weight=4.7)
g.add_edges_from([(3,4),(4,5)], color='red')
g.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
g[1][2]['weight'] = 4.7
g.edge[1][2]['weight'] = 4

8. 不同类型的图(有向图Directed graphs , 重边图 Multigraphs)

Directed graphs

DG = nx.DiGraph()
DG.add_weighted_edges_from([(1,2,0.5), (3,1,0.75), (1,4,0.3)]) # 添加带权值的边
print DG.out_degree(1) # 打印结果:2 表示:找到1的出度
print DG.out_degree(1, weight='weight') # 打印结果:0.8 表示:从1出去的边的权值和,这里权值是以weight属性值作为标准,如果你有一个money属性,那么也可以修改为weight='money',那么结果就是对money求和了
print DG.successors(1) # [2,4] 表示1的后继节点有2和4
print DG.predecessors(1) # [3] 表示只有一个节点3有指向1的连边

Multigraphs

简答从字面上理解就是这种复杂网络图允许你相同节点之间允许出现重边

MG=nx.MultiGraph()
MG.add_weighted_edges_from([(1,2,.5), (1,2,.75), (2,3,.5)])
print MG.degree(weight='weight') # {1: 1.25, 2: 1.75, 3: 0.5}
GG=nx.Graph()
for n,nbrs in MG.adjacency_iter():
 for nbr,edict in nbrs.items():
  minvalue=min([d['weight'] for d in edict.values()])
  GG.add_edge(n,nbr, weight = minvalue)

print nx.shortest_path(GG,1,3) # [1, 2, 3]

9.  图的遍历

g = nx.Graph()
g.add_weighted_edges_from([(1,2,0.125),(1,3,0.75),(2,4,1.2),(3,4,0.375)])
for n,nbrs in g.adjacency_iter(): #n表示每一个起始点,nbrs是一个字典,字典中的每一个元素包含了这个起始点连接的点和这两个点连边对应的属性
 print n, nbrs
 for nbr,eattr in nbrs.items():
  # nbr表示跟n连接的点,eattr表示这两个点连边的属性集合,这里只设置了weight,如果你还设置了color,那么就可以通过eattr['color']访问到对应的color元素
  data=eattr['weight']
  if data<0.5: print('(%d, %d, %.3f)' % (n,nbr,data))

10. 图生成和图上的一些操作

下方的这些操作都是在networkx包内的方法

subgraph(G, nbunch)  - induce subgraph of G on nodes in nbunch
union(G1,G2)    - graph union
disjoint_union(G1,G2) - graph union assuming all nodes are different
cartesian_product(G1,G2) - return Cartesian product graph
compose(G1,G2)   - combine graphs identifying nodes common to both
complement(G)   - graph complement
create_empty_copy(G)  - return an empty copy of the same graph class
convert_to_undirected(G) - return an undirected representation of G
convert_to_directed(G) - return a directed representation of G

11. 图上分析

g = nx.Graph()
g.add_edges_from([(1,2), (1,3)])
g.add_node("spam") 
nx.connected_components(g) # [[1, 2, 3], ['spam']] 表示返回g上的不同连通块
sorted(nx.degree(g).values())

通过构建权值图,可以直接快速利用dijkstra_path()接口计算最短路程

>>> G=nx.Graph()
>>> e=[('a','b',0.3),('b','c',0.9),('a','c',0.5),('c','d',1.2)]
>>> G.add_weighted_edges_from(e)
>>> print(nx.dijkstra_path(G,'a','d'))
['a', 'c', 'd']

12. 图的绘制

下面是4种图的构造方法,选择其中一个

nx.draw(g)
nx.draw_random(g) #点随机分布
nx.draw_circular(g) #点的分布形成一个环
nx.draw_spectral(g)

最后将图形表现出来

import matplotlib.pyplot as plt
plt.show()

将图片保存到下来

nx.draw(g)
plt.savefig("path.png")

修改节点颜色,边的颜色

g = nx.cubical_graph()
nx.draw(g, pos=nx.spectral_layout(g), nodecolor='r', edge_color='b')
plt.show()

13. 图形种类的选择

Graph Type NetworkX Class
简单无向图 Graph()
简单有向图 DiGraph()
有自环 Grap(),DiGraph()
有重边 MultiGraph(), MultiDiGraph()

reference:https://networkx.github.io/documentation/networkx-1.10/reference/classes.html

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用post提交数据到远程url的方法
Apr 29 Python
python2.7的编码问题与解决方法
Oct 04 Python
Python3爬虫学习之MySQL数据库存储爬取的信息详解
Dec 12 Python
Django模型序列化返回自然主键值示例代码
Jun 12 Python
Win10下Python3.7.3安装教程图解
Jul 08 Python
python字符串替换re.sub()实例解析
Feb 09 Python
python爬虫使用正则爬取网站的实现
Aug 03 Python
详解python方法之绑定方法与非绑定方法
Aug 17 Python
利用python如何实现猫捉老鼠小游戏
Dec 04 Python
如何在vscode中安装python库的方法步骤
Jan 06 Python
Python用requests库爬取返回为空的解决办法
Feb 21 Python
Python实现将多张图片合成MP4视频并加入背景音乐
Apr 28 Python
python卸载后再次安装遇到的问题解决
Jul 10 #Python
Python求离散序列导数的示例
Jul 10 #Python
Python Matplotlib 基于networkx画关系网络图
Jul 10 #Python
我们为什么要减少Python中循环的使用
Jul 10 #Python
详解Python中的各种转义符\n\r\t
Jul 10 #Python
使用python画社交网络图实例代码
Jul 10 #Python
python 绘制拟合曲线并加指定点标识的实现
Jul 10 #Python
You might like
PHP学习笔记 (1) 环境配置与代码调试
2011/06/19 PHP
php mysql PDO 查询操作的实例详解
2017/09/23 PHP
在线编辑器的实现原理(兼容IE和FireFox)
2007/03/09 Javascript
用JQUERY增删元素的代码
2012/02/14 Javascript
创建公共调用 jQuery Ajax 带返回值
2012/08/01 Javascript
javascript setTimeout和setInterval计时的区别详解
2013/06/21 Javascript
js中for in的用法示例解析
2013/12/25 Javascript
js身份证判断方法支持15位和18位
2014/03/18 Javascript
js和jquery中循环的退出和继续学习记录
2014/09/06 Javascript
jQuery on()方法使用技巧详解
2015/04/16 Javascript
jquery判断单选按钮radio是否选中的方法
2015/05/05 Javascript
原生js的数组除重复简单实例
2016/05/24 Javascript
对称加密与非对称加密优缺点详解
2017/02/06 Javascript
js 博客内容进度插件详解
2017/02/19 Javascript
利用js定义一个导航条菜单
2017/03/14 Javascript
简单好用的nodejs 爬虫框架分享
2017/03/26 NodeJs
js正则表达式校验指定字符串的方法
2018/07/23 Javascript
详解angular2如何手动点击特定元素上的点击事件
2018/10/16 Javascript
Nodejs中怎么实现函数的串行执行
2019/03/02 NodeJs
JavaScrip数组去重操作实例小结
2019/06/20 Javascript
微信小程序实现上拉加载功能
2019/11/20 Javascript
微信小程序实现拼图小游戏
2020/10/22 Javascript
详解Python中的strftime()方法的使用
2015/05/22 Python
python多线程方式执行多个bat代码
2016/06/07 Python
Python实现京东秒杀功能代码
2019/05/16 Python
有趣的睡衣和礼物:LazyOne
2019/11/27 全球购物
超市后勤自我鉴定
2014/01/17 职场文书
自荐信写法介绍
2014/01/25 职场文书
草船借箭教学反思
2014/02/03 职场文书
教师个人剖析材料
2014/02/05 职场文书
贷款担保申请书
2014/05/20 职场文书
品牌转让协议书
2014/08/20 职场文书
承诺函范文
2015/01/21 职场文书
工作调动申请报告
2015/05/18 职场文书
协议书格式模板
2016/03/24 职场文书
员工升职自我评价
2019/03/26 职场文书