Python读取多列数据以及用matplotlib制作图表方法实例


Posted in Python onSeptember 23, 2020

多列数据的读入以及处理

这次我们用到的数据是煤炭5500周价格的最高价和最低价。左侧为价格的数据表格,右侧为日期。

Python读取多列数据以及用matplotlib制作图表方法实例

一、导入数据

这里我们就直接跳过讲解,如有不懂的,详见上一篇博客。见代码。

import matplotlib.pyplot as plt
import re
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体
plt.rcParams['axes.unicode_minus'] = False # 设置正负号
# 导入数据,日期
with open('日期.csv', encoding='gbk') as oo:
  day = oo.read()
day_str = day.replace('\n', ',') # 换行替换成逗号
day_list = re.split('[,]', day_str)
list_days = []
for s in range(len(day_list)-1): # 获得时间
  list_days.append(day_list[s])
# 将x转换成时间类型
# 导入数据,金额
with open('煤炭5500周价格波动数据.csv', encoding='gbk') as pp:
  sk = pp.read()
ll = sk.replace('\n', ',') # 换行替换成逗号
list_1 = re.split('[,]', ll) # 分割数据
list_2 = []
for s in range(len(list_1)-1):
  list_2.append(int(float(list_1[s])))

现在我们已经讲数据读取到相关的列表里,输出一下。

输出结果:
['2019/12/27', '2019/12/20', '2019/12/13', '2019/12/6', '2019/11/29', '2019/11/22', '2019/11/15', '2019/11/8', '2019/11/1', '2019/10/25', '2019/10/18', '2019/10/11', '2019/9/27', '2019/9/20', '2019/9/12', '2019/9/12', '2019/9/6', '2019/8/30', '2019/8/23', '2019/8/16', '2019/8/9', '2019/8/2', '2019/7/26', '2019/7/19', '2019/7/12', '2019/7/5', '2019/6/28', '2019/6/21', '2019/6/14', '2019/6/7', '2019/5/31', '2019/5/24', '2019/5/17', '2019/5/10', '2019/4/26', '2019/4/19', '2019/4/12', '2019/4/5', '2019/3/29', '2019/3/22', '2019/3/15', '2019/3/8', '2019/3/1', '2019/2/22', '2019/2/15', '2019/2/1', '2019/1/25', '2019/1/18', '2019/1/18', '2019/1/11', '2019/1/4', '2018/12/28']
[550, 555, 550, 555, 550, 555, 550, 555, 550, 555, 550, 555, 550, 555, 550, 555, 560, 565, 570, 575, 575, 580, 580, 585, 585, 590, 585, 590, 585, 590, 585, 590, 580, 585, 580, 585, 580, 590, 575, 585, 580, 590, 595, 600, 590, 600, 590, 595, 600, 605, 605, 615, 600, 610, 590, 600, 590, 600, 590, 600, 595, 600, 610, 620, 615, 620, 615, 620, 615, 625, 620, 625, 630, 640, 620, 630, 620, 625, 620, 630, 625, 630, 635, 645, 615, 625, 600, 605, 600, 605, 585, 590, 590, 595, 590, 595, 590, 595, 580, 590, 585, 595, 575, 580]

二、处理价格数据

我们可以看到0,2,4,6,8.......等偶数位的数值是周最低价,而单数位的数值是周最高价。我们可以用循环的方式读取到相关的数据。

代码如下。

这样就可以把数据进行分组了。以此类推,可以导入多列数据。

根据观察可以看到,时间列表是以降序的方式排列的,我们需要将数据转置过来,让列表数据改为升序。方法一、调整导入的CSV文件的数据顺序。方法二、我们引入reversed()函数。该函数有两种写法,作用主要是将列表,range(),字典里的数据进行逆向排列。

逆转对象:list_x
写法一、
xxx = reversed(list_x)
写法二、
直接使用
list(reversed(list_x))
aaa = reversed(list_average) 转置一个作为样例
# 以上分割取得list_high,low,average
# 设置x轴,y轴标签,设置表格标题
plt.xlabel('时间')
plt.ylabel('价格')
plt.title('最高价/最低价/均价周期波动图')
plt.legend(loc='upper right')
plt.figure(figsize=(9, 8))输出图片大小900px*800px

图表制作

需要的数据我们已经处理好了,接着就是生成图表。

import matplotlib.pyplot as plt
import re
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体
plt.rcParams['axes.unicode_minus'] = False # 设置正负号
# 导入数据,日期
with open('日期.csv', encoding='gbk') as oo:
  day = oo.read()
day_str = day.replace('\n', ',') # 换行替换成逗号
day_list = re.split('[,]', day_str)
list_days = []
for s in range(len(day_list)-1): # 获得时间
  list_days.append(day_list[s])
print(list_days)
# 将x转换成时间类型
# 导入数据,金额
with open('煤炭5500周价格波动数据.csv', encoding='gbk') as pp:
  sk = pp.read()
ll = sk.replace('\n', ',') # 换行替换成逗号
list_1 = re.split('[,]', ll) # 分割数据
list_2 = []
for s in range(len(list_1)-1):
  list_2.append(int(float(list_1[s])))
print(list_2)
list_high = [] # 最高
list_low = [] # 最低
list_average = [] # 均值
for k in range(len(list_2)):
  if k % 2 == 0:
    list_low.append(list_2[k])
    list_average.append((list_2[k]+list_2[k+1])/2)
  else:
    list_high.append(list_2[k])
aaa = reversed(list_average)
# 以上分割取得list_high,low,average
# 设置x轴,y轴标签,设置表格标题
plt.xlabel('时间')
plt.ylabel('价格')
plt.title('最高价/最低价/均价周期波动图')
# 设置标注
 
plt.figure(figsize=(9, 8))
 
# 制作折现图
plt.plot(range(len(list_low)), list(reversed(list_high)), label='最高价', color='brown',marker='o',markerfacecolor='c',markersize='5')
plt.plot(range(len(list_low)), list(reversed(list_low)), label='最低价', color='skyblue',marker='s',markerfacecolor='r',markersize='5')
plt.plot(range(len(list_low)), list(reversed(list_average)), label='均价', color='lawngreen',marker='h',markerfacecolor='coral',markersize='5')
# 设置标注
plt.legend(loc='upper right') # 右上upper right 右下lower right
plt.show()

这是到目前我们制作出来的折线图

Python读取多列数据以及用matplotlib制作图表方法实例

替换x轴坐标点更改成日期

这里我们使用到plt.xticks()

书写格式:
plt.xticks(被替换的数值(数据长的的列表),替换的数据,数据方向(默认横向))
plt.xticks(range(len(list_low)), list(reversed(list_days)), rotation='vertical')
vertical:数值方向,也可以写角度。

到这了我们就完成了全部的代码。

结束:最终代码

import matplotlib.pyplot as plt
import re
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体
plt.rcParams['axes.unicode_minus'] = False # 设置正负号
# 导入数据,日期
with open('日期.csv', encoding='gbk') as oo:
  day = oo.read()
day_str = day.replace('\n', ',') # 换行替换成逗号
day_list = re.split('[,]', day_str)
list_days = []
for s in range(len(day_list)-1): # 获得时间
  list_days.append(day_list[s])
print(list_days)
# 将x转换成时间类型
# 导入数据,金额
with open('煤炭5500周价格波动数据.csv', encoding='gbk') as pp:
  sk = pp.read()
ll = sk.replace('\n', ',') # 换行替换成逗号
list_1 = re.split('[,]', ll) # 分割数据
list_2 = []
for s in range(len(list_1)-1):
  list_2.append(int(float(list_1[s])))
print(list_2)
list_high = [] # 最高
list_low = [] # 最低
list_average = [] # 均值
for k in range(len(list_2)):
  if k % 2 == 0:
    list_low.append(list_2[k])
    list_average.append((list_2[k]+list_2[k+1])/2)
  else:
    list_high.append(list_2[k])
aaa = reversed(list_average)
# 以上分割取得list_high,low,average
# 设置x轴,y轴标签,设置表格标题
plt.xlabel('时间')
plt.ylabel('价格')
plt.title('最高价/最低价/均价周期波动图')
# 设置标注
 
plt.figure(figsize=(9, 8))
 
plt.xticks(range(len(list_low)), list(reversed(list_days)), rotation='vertical')
# 设置折现图
plt.plot(range(len(list_low)), list(reversed(list_high)), label='最高价', color='brown',marker='o',markerfacecolor='c',markersize='5')
plt.plot(range(len(list_low)), list(reversed(list_low)), label='最低价', color='skyblue',marker='s',markerfacecolor='r',markersize='5')
plt.plot(range(len(list_low)), list(reversed(list_average)), label='均价', color='lawngreen',marker='h',markerfacecolor='coral',markersize='5')
# 设置标注
plt.legend(loc='upper right') 
plt.show()

结果示意图:

Python读取多列数据以及用matplotlib制作图表方法实例

总结

到此这篇关于Python读取多列数据以及用matplotlib制作图片的文章就介绍到这了,更多相关Python读取多列数据用matplotlib制作图片内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python实现类似比特币的加密货币区块链的创建与交易实例
Mar 20 Python
Python DataFrame设置/更改列表字段/元素类型的方法
Jun 09 Python
pygame实现俄罗斯方块游戏
Jun 26 Python
处理python中多线程与多进程中的数据共享问题
Jul 28 Python
pytorch神经网络之卷积层与全连接层参数的设置方法
Aug 18 Python
利用python Selenium实现自动登陆京东签到领金币功能
Oct 31 Python
运行tensorflow python程序,限制对GPU和CPU的占用操作
Feb 06 Python
Python接口测试get请求过程详解
Feb 28 Python
django 外键创建注意事项说明
May 20 Python
Python Opencv轮廓常用操作代码实例解析
Sep 01 Python
Elasticsearch py客户端库安装及使用方法解析
Sep 14 Python
Python爬虫UA伪装爬取的实例讲解
Feb 19 Python
PyCharm 2020.2下配置Anaconda环境的方法步骤
Sep 23 #Python
python中如何打包用户自定义模块
Sep 23 #Python
python使用matplotlib绘制折线图的示例代码
Sep 22 #Python
python利用paramiko实现交换机巡检的示例
Sep 22 #Python
python批量修改交换机密码的示例
Sep 22 #Python
python爬虫构建代理ip池抓取数据库的示例代码
Sep 22 #Python
scrapy中如何设置应用cookies的方法(3种)
Sep 22 #Python
You might like
社区(php&&mysql)二
2006/10/09 PHP
input file获得文件根目录简单实现
2013/04/26 PHP
深入PHP FTP类的详解
2013/06/13 PHP
解析PHP中DIRECTORY_SEPARATOR,PATH_SEPARATOR两个常量的作用
2013/06/21 PHP
php_screw安装使用教程(另一个PHP代码加密实现)
2014/05/29 PHP
php定时执行任务设置详解
2015/02/06 PHP
js生成随机数之random函数随机示例
2013/12/20 Javascript
javascript中验证大写字母、数字和中文
2014/01/15 Javascript
常用的jquery模板插件——jQuery Boilerplate介绍
2014/09/23 Javascript
jQuery实现字符串按指定长度加入特定内容的方法
2015/03/11 Javascript
js淡入淡出焦点图幻灯片效果代码分享
2015/09/08 Javascript
JavaScript观察者模式(经典)
2015/12/09 Javascript
JSON+Jquery省市区三级联动
2016/01/13 Javascript
Spring MVC中Ajax实现二级联动的简单实例
2016/07/06 Javascript
微信小程序基础教程之worker线程的使用方法
2019/07/15 Javascript
Vue组件间通信 Vuex的用法解析
2019/08/05 Javascript
python设置检查点简单实现代码
2014/07/01 Python
详谈Python2.6和Python3.0中对除法操作的异同
2017/04/28 Python
Tensorflow之构建自己的图片数据集TFrecords的方法
2018/02/07 Python
python3 对list中每个元素进行处理的方法
2018/06/29 Python
详解Python Qt的窗体开发的基本操作
2019/07/14 Python
使用Python打造一款间谍程序的流程分析
2020/02/21 Python
python 穷举指定长度的密码例子
2020/04/02 Python
html5使用canvas画空心圆与实心圆
2014/12/15 HTML / CSS
利用HTML5中的Canvas绘制一张笑脸的教程
2015/05/07 HTML / CSS
Tahari ASL官方网站:高级设计师女装
2021/03/15 全球购物
银行实习生的自我评价
2013/12/09 职场文书
项目合作协议书
2014/04/16 职场文书
村干部培训方案
2014/05/02 职场文书
中专生自荐信
2014/06/25 职场文书
2015年学校后勤工作总结
2015/04/08 职场文书
2016元旦晚会主持词开场白和结束语
2015/12/04 职场文书
php实现自动生成验证码的实例讲解
2021/11/17 PHP
redis 解决库存并发问题实现数量控制
2022/04/08 Redis
Nginx 匹配方式
2022/05/15 Servers
Tomcat 与 maven 的安装与使用教程
2022/06/16 Servers