Python Opencv轮廓常用操作代码实例解析


Posted in Python onSeptember 01, 2020

1.颜色空间转换

使用cv2.cvtColor(input_image ,flag),flag为转换类型

常用的转换类型有:

  • BGR和灰度图的转换使用 cv2.COLOR_BGR2GRAY
  • BGR和HSV的转换使用 cv2.COLOR_BGR2HSV

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

2.二值化

  • ret, dst = cv2.threshold(src, thresh, maxval, type)
  • src:表示的是图片源(灰度图)
  • thresh:表示的是阈值(起始值)
  • maxval:表示的是最大值
  • type:表示的是这里划分的时候使用的是什么类型的算法,常用值为0(cv2.THRESH_BINARY)

返回值

ret:指定的thresh

dst: 目标图像

Python Opencv轮廓常用操作代码实例解析

ret, dst = cv2.threshold(img_gray, 200, 255, cv2.THRESH_BINARY)

3.查找并绘制轮廓

3.1 cv2.findContours(image, mode, method[, offset])

概述:

寻找一个二值图像的轮廓。注意黑色表示背景,白色表示物体,即在黑色背景里寻找白色物体的轮廓

参数:

  • image: 8位单通道图像。非零像素值视为1,所以图像视作二值图像
  • mode: 轮廓检索的方式
    • cv2.RETR_EXTERNAL: 只检索外部轮廓
    • cv2.RETR_LIST: 检测所有轮廓且不建立层次结构
    • cv2.RETR_CCOMP: 检测所有轮廓,建立两级层次结构。上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。
    • cv2.RETR_TREE: 检测所有轮廓,建立完整的层次结构
  • method: 轮廓近似的方法
    • cv2.CHAIN_APPROX_NONE: 存储所有的轮廓点
    • cv2.CHAIN_APPROX_SIMPLE: 压缩水平,垂直和对角线段,只留下端点。 例如矩形轮廓可以用4个点编码
    • cv2.CHAIN_APPROX_TC89_L1,cv2.CHAIN_APPROX_TC89_KCOS:使用Teh-Chini chain近似算法
  • offset:(可选参数)轮廓点的偏移量,格式为tuple,如(-10,10)表示轮廓点沿X负方向偏移10个像素点,沿Y正方向偏移10个像素点

返回值:

  • contours: 轮廓点。列表格式,每一个元素为一个3维数组(其形状为(n,1,2),其中n表示轮廓点个数,2表示像素点坐标),表示一个轮廓
  • hierarchy: 轮廓间的层次关系,为三维数组,形状为(1,n,4),其中n表示轮廓总个数,4指的是用4个数表示各轮廓间的相互关系。第一个数表示同级轮廓的下一个轮廓编号,第二个数表示同级轮廓的上一个轮廓的编号,第三个数表示该轮廓下一级轮廓的编号,第四个数表示该轮廓的上一级轮廓的编号

补充: 若想得到轮廓点的集合的列表,可使用

cnt = np.squeeze(contours[0])

3.2 cv2.drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]])

参数:

  • image: 需要绘制轮廓的目标图像,注意会改变原图
  • contours: 轮廓点,上述函数cv2.findContours()的第一个返回值
  • contourIdx: 轮廓的索引,表示绘制第几个轮廓,-1表示绘制所有的轮廓
  • color: 绘制轮廓的颜色
  • thickness:(可选参数)轮廓线的宽度,-1表示填充
  • lineType:(可选参数)轮廓线型,包括cv2.LINE_4,cv2.LINE_8(默认),cv2.LINE_AA,分别表示4邻域线,8领域线,抗锯齿线(可以更好地显示曲线)
  • hierarchy:(可选参数)层级结构,上述函数cv2.findContours()的第二个返回值,配合maxLevel参数使用
  • maxLevel:(可选参数)等于0表示只绘制指定的轮廓,等于1表示绘制指定轮廓及其下一级子轮廓,等于2表示绘制指定轮廓及其所有子轮廓
  • offset:(可选参数)轮廓点的偏移量

import cv2
img = cv2.imread('D:/2.jpg',1)

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, dst = cv2.threshold(img_gray, 200, 255, cv2.THRESH_BINARY)

contours,hierarchy = cv2.findContours(dst, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
cv2.drawContours(img, contours, -1, (0, 255, 0), 3)

cv2.imshow('img',img)
cv2.waitKey(0)

4.点与轮廓位置关系

此功能可查找图像中的点与轮廓之间的最短距离。当点在轮廓外时返回负值,当点在内部时返回正值,如果点在轮廓上则返回零

dist = cv2.pointPolygonTest(cnt, (100, 100), True)

检查(100,100)与轮廓(cnt)的距离

在函数中,第二个参数需要tuple类型;第三个参数是measureDist。 如果为True,则查找距离. 如果为False,则查找该点是在内部还是外部或在轮廓上(它分别返回+1,-1,0)

如果不需要到距离,请确保第三个参数为False,因为这是一个耗时的过程。因此,将其设为False可提供2-3倍的加速

5.直线拟合fitline函数

output = cv2.fitLine(InputArray points, distType, param, reps, aeps)

参数:

  • InputArray Points: 待拟合的直线的集合,必须是矩阵形式(如numpy.array)
  • distType: 距离类型。fitline为距离最小化函数,拟合直线时,要使输入点到拟合直线的距离和最小化。这里的距离的类型有以下几种:
    • cv2.DIST_USER : User defined distance
    • cv2.DIST_L1: distance = |x1-x2| + |y1-y2|
    • cv2.DIST_L2: 欧式距离,此时与最小二乘法相同
    • cv2.DIST_C: distance = max(|x1-x2|,|y1-y2|)
    • cv2.DIST_L12: L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1))
    • cv2.DIST_FAIR
    • cv2.DIST_WELSCH
    • cv2.DIST_HUBER
  • param: 距离参数,跟所选的距离类型有关,值可以设置为0
  • reps,aeps: 第5/6个参数用于表示拟合直线所需要的径向和角度精度,通常情况下两个值均被设定为1e-2

返回值:

output:对于二维直线,输出output为4维,前两维代表拟合出的直线的方向,后两位代表直线上的一点。(即通常说的点斜式直线)

loc = np.array(loc)
output = cv2.fitLine(loc, cv2.DIST_L2, 0, 0.01, 0.01)
k = output[1] / output[0]
b = output[3] - k * output[2]#k[key]报错?

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python基础教程之获取本机ip数据包示例
Feb 10 Python
python实现保存网页到本地示例
Mar 16 Python
Python open()文件处理使用介绍
Nov 30 Python
浅谈对yield的初步理解
May 29 Python
python使用webdriver爬取微信公众号
Aug 31 Python
Python 数据库操作 SQLAlchemy的示例代码
Feb 18 Python
基于python实现的百度音乐下载器python pyqt改进版(附代码)
Aug 05 Python
python 实现检验33品种数据是否是正态分布
Dec 09 Python
Python爬虫工具requests-html使用解析
Apr 29 Python
Python pip安装第三方库实现过程解析
Jul 09 Python
解决Pyinstaller打包软件失败的一个坑
Mar 04 Python
python创建字典及相关管理操作
Apr 13 Python
聊聊python中的异常嵌套
Sep 01 #Python
理解Django 中Call Stack机制的小Demo
Sep 01 #Python
如何快速理解python的垃圾回收机制
Sep 01 #Python
Python Opencv图像处理基本操作代码详解
Aug 31 #Python
Python Matplotlib绘图基础知识代码解析
Aug 31 #Python
一些关于python 装饰器的个人理解
Aug 31 #Python
Python常用模块函数代码汇总解析
Aug 31 #Python
You might like
php去除重复字的实现代码
2011/09/16 PHP
PHP中单引号与双引号的区别分析
2014/08/19 PHP
php实现点击可刷新验证码
2015/11/07 PHP
thinkphp5框架前后端分离项目实现分页功能的方法分析
2019/10/08 PHP
Thinkphp5.0框架使用模型Model的获取器、修改器、软删除数据操作示例
2019/10/11 PHP
js jquery验证银行卡号信息正则学习
2013/01/21 Javascript
jQuery UI 实现email输入提示实例
2013/08/15 Javascript
js加密解密字符串可自定义密码因子
2014/05/13 Javascript
使用nodejs、Python写的一个简易HTTP静态文件服务器
2014/07/18 NodeJs
jQuery实现仿Alipay支付宝首页全屏焦点图切换特效
2015/05/04 Javascript
jQuery实现ajax的叠加和停止(终止ajax请求)
2016/08/08 Javascript
jQuery快速高效制作网页交互特效
2017/02/24 Javascript
深入理解Vue transition源码分析
2017/07/30 Javascript
微信小程序富文本渲染引擎的详解
2017/09/30 Javascript
vue实现提示保存后退出的方法
2018/03/15 Javascript
微信小程序文字显示换行问题
2019/07/28 Javascript
js实现省级联动(数据结构优化)
2020/07/17 Javascript
[03:57]DOTA2英雄梦之声_第03期_幻影刺客
2014/06/21 DOTA
[01:02:04]EG vs Liquid 2019国际邀请赛淘汰赛 败者组 BO3 第一场 8.23
2019/09/05 DOTA
python中常用的九种预处理方法分享
2016/09/11 Python
分享一下Python数据分析常用的8款工具
2018/04/29 Python
python采集微信公众号文章
2018/12/20 Python
使用python写的opencv实时监测和解析二维码和条形码
2019/08/14 Python
Python使用微信itchat接口实现查看自己微信的信息功能详解
2019/08/22 Python
Python django搭建layui提交表单,表格,图标的实例
2019/11/18 Python
如何使用Python抓取网页tag操作
2020/02/14 Python
html5指南-6.如何创建离线web应用程序实现离线访问
2013/01/07 HTML / CSS
英国国家美术馆商店:National Gallery
2019/05/01 全球购物
什么是虚拟内存?虚拟内存有什么优势?
2016/02/09 面试题
毕业生的自我鉴定
2013/10/29 职场文书
父亲的菜园教学反思
2014/02/13 职场文书
促销活动方案模板
2014/02/24 职场文书
小学生暑假生活总结
2015/07/13 职场文书
李清照的诗词赏析(20首)
2019/08/22 职场文书
详解Django的MVT设计模式
2021/04/29 Python
浅谈pytorch中的dropout的概率p
2021/05/27 Python