python3实现单目标粒子群算法


Posted in Python onNovember 14, 2019

本文实例为大家分享了python3单目标粒子群算法的具体代码,供大家参考,具体内容如下

关于PSO的基本知识......就说一下算法流程

1) 初始化粒子群;

    随机设置各粒子的位置和速度,默认粒子的初始位置为粒子最优位置,并根据所有粒子最优位置,选取群体最优位置。

2) 判断是否达到迭代次数;

    若没有达到,则跳转到步骤3)。否则,直接输出结果。

3) 更新所有粒子的位置和速度;

4) 计算各粒子的适应度值。

     将粒子当前位置的适应度值与粒子最优位置的适应度值进行比较,决定是否更新粒子最优位置;将所有粒子最优位置的适应度值与群体最优位置的适应度值进行比较,决定是否更新群体最优位置。然后,跳转到步骤2)。

直接扔代码......(PS:1.参数动态调节;2.例子是二维的)

首先,是一些准备工作...

# Import libs
import numpy as np
import random as rd
import matplotlib.pyplot as plt
 
# Constant definition
MIN_POS = [-5, -5]         # Minimum position of the particle
MAX_POS = [5, 5]          # Maximum position of the particle
MIN_SPD = [-0.5, -0.5]        # Minimum speed of the particle
MAX_SPD = [1, 1]          # Maximum speed of the particle
C1_MIN = 0
C1_MAX = 1.5
C2_MIN = 0
C2_MAX = 1.5
W_MAX = 1.4
W_MIN = 0

然后是PSO类

# Class definition
class PSO():
 """
  PSO class
 """
 
 def __init__(self,iters=100,pcount=50,pdim=2,mode='min'):
  """
   PSO initialization
   ------------------
  """
 
  self.w = None         # Inertia factor
  self.c1 = None        # Learning factor
  self.c2 = None        # Learning factor
 
  self.iters = iters       # Number of iterations
  self.pcount = pcount       # Number of particles
  self.pdim = pdim        # Particle dimension
  self.gbpos = np.array([0.0]*pdim)    # Group optimal position
  
  self.mode = mode        # The mode of PSO
 
  self.cur_pos = np.zeros((pcount, pdim))  # Current position of the particle
  self.cur_spd = np.zeros((pcount, pdim))  # Current speed of the particle
  self.bpos = np.zeros((pcount, pdim))   # The optimal position of the particle
 
  self.trace = []        # Record the function value of the optimal solution
  
 
 def init_particles(self):
  """
   init_particles function
   -----------------------
  """
 
  # Generating particle swarm
  for i in range(self.pcount):
   for j in range(self.pdim):
    self.cur_pos[i,j] = rd.uniform(MIN_POS[j], MAX_POS[j])
    self.cur_spd[i,j] = rd.uniform(MIN_SPD[j], MAX_SPD[j])
    self.bpos[i,j] = self.cur_pos[i,j]
 
  # Initial group optimal position
  for i in range(self.pcount):
   if self.mode == 'min':
    if self.fitness(self.cur_pos[i]) < self.fitness(self.gbpos):
     gbpos = self.cur_pos[i]
   elif self.mode == 'max':
    if self.fitness(self.cur_pos[i]) > self.fitness(self.gbpos):
     gbpos = self.cur_pos[i]
 
 def fitness(self, x):
  """
   fitness function
   ----------------
   Parameter:
    x : 
  """
  
  # Objective function
  fitval = 5*np.cos(x[0]*x[1])+x[0]*x[1]+x[1]**3 # min
  # Retyrn value
  return fitval
 
 def adaptive(self, t, p, c1, c2, w):
  """
  """
 
  #w = 0.95 #0.9-1.2
  if t == 0:
   c1 = 0
   c2 = 0
   w = 0.95
  else:
   if self.mode == 'min':
    # c1
    if self.fitness(self.cur_pos[p]) > self.fitness(self.bpos[p]):
     c1 = C1_MIN + (t/self.iters)*C1_MAX + np.random.uniform(0,0.1)
    elif self.fitness(self.cur_pos[p]) <= self.fitness(self.bpos[p]):
     c1 = c1
    # c2 
    if self.fitness(self.bpos[p]) > self.fitness(self.gbpos):
     c2 = C2_MIN + (t/self.iters)*C2_MAX + np.random.uniform(0,0.1)
    elif self.fitness(self.bpos[p]) <= self.fitness(self.gbpos):
     c2 = c2
    # w
    #c1 = C1_MAX - (C1_MAX-C1_MIN)*(t/self.iters)
    #c2 = C2_MIN + (C2_MAX-C2_MIN)*(t/self.iters)
    w = W_MAX - (W_MAX-W_MIN)*(t/self.iters)
   elif self.mode == 'max':
    pass
 
  return c1, c2, w
 
 def update(self, t):
  """
   update function
   ---------------
    Note that :
     1. Update particle position
     2. Update particle speed
     3. Update particle optimal position
     4. Update group optimal position
  """
 
  # Part1 : Traverse the particle swarm
  for i in range(self.pcount):
   
   # Dynamic parameters
   self.c1, self.c2, self.w = self.adaptive(t,i,self.c1,self.c2,self.w)
   
   # Calculate the speed after particle iteration
   # Update particle speed
   self.cur_spd[i] = self.w*self.cur_spd[i] \
        +self.c1*rd.uniform(0,1)*(self.bpos[i]-self.cur_pos[i])\
        +self.c2*rd.uniform(0,1)*(self.gbpos - self.cur_pos[i])
   for n in range(self.pdim):
    if self.cur_spd[i,n] > MAX_SPD[n]:
     self.cur_spd[i,n] = MAX_SPD[n]
    elif self.cur_spd[i,n] < MIN_SPD[n]:
     self.cur_spd[i,n] = MIN_SPD[n]
 
   # Calculate the position after particle iteration
   # Update particle position 
   self.cur_pos[i] = self.cur_pos[i] + self.cur_spd[i]
   for n in range(self.pdim):
    if self.cur_pos[i,n] > MAX_POS[n]:
     self.cur_pos[i,n] = MAX_POS[n]
    elif self.cur_pos[i,n] < MIN_POS[n]:
     self.cur_pos[i,n] = MIN_POS[n]
    
  # Part2 : Update particle optimal position
  for k in range(self.pcount):
   if self.mode == 'min':
    if self.fitness(self.cur_pos[k]) < self.fitness(self.bpos[k]):
     self.bpos[k] = self.cur_pos[k]
   elif self.mode == 'max':
    if self.fitness(self.cur_pos[k]) > self.fitness(self.bpos[k]):
     self.bpos[k] = self.cur_pos[k]
 
  # Part3 : Update group optimal position
  for k in range(self.pcount):
   if self.mode == 'min':
    if self.fitness(self.bpos[k]) < self.fitness(self.gbpos):
     self.gbpos = self.bpos[k]
   elif self.mode == 'max':
    if self.fitness(self.bpos[k]) > self.fitness(self.gbpos):
     self.gbpos = self.bpos[k]
 
 def run(self):
  """
   run function
   -------------
  """
 
  # Initialize the particle swarm
  self.init_particles()
 
  # Iteration
  for t in range(self.iters):
   # Update all particle information
   self.update(t)
   #
   self.trace.append(self.fitness(self.gbpos))

然后是main...

def main():
 """
  main function
 """
 
 for i in range(1):
  
  pso = PSO(iters=100,pcount=50,pdim=2, mode='min')
  pso.run()
   
  #
  print('='*40)
  print('= Optimal solution:')
  print('= x=', pso.gbpos[0])
  print('= y=', pso.gbpos[1])
  print('= Function value:')
  print('= f(x,y)=', pso.fitness(pso.gbpos))
  #print(pso.w)
  print('='*40)
  
  #
  plt.plot(pso.trace, 'r')
  title = 'MIN: ' + str(pso.fitness(pso.gbpos))
  plt.title(title)
  plt.xlabel("Number of iterations")
  plt.ylabel("Function values")
  plt.show()
 #
 input('= Press any key to exit...')
 print('='*40)
 exit() 
 
 
if __name__ == "__main__":
 
 main()

最后是计算结果,完美结束!!!

python3实现单目标粒子群算法

python3实现单目标粒子群算法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python列表推导式的使用方法
Nov 21 Python
详解Python的Django框架中manage命令的使用与扩展
Apr 11 Python
VSCode下配置python调试运行环境的方法
Apr 06 Python
python使用socket创建tcp服务器和客户端
Apr 12 Python
对Python中内置异常层次结构详解
Oct 18 Python
DRF跨域后端解决之django-cors-headers的使用
Jan 27 Python
Python3网络爬虫开发实战之极验滑动验证码的识别
Aug 02 Python
详解基于python的多张不同宽高图片拼接成大图
Sep 26 Python
python3实现单目标粒子群算法
Nov 14 Python
pytorch Dataset,DataLoader产生自定义的训练数据案例
Mar 03 Python
Python基础之pandas数据合并
Apr 27 Python
七个Python必备的GUI库
Apr 27 Python
python socket 聊天室实例代码详解
Nov 14 #Python
python中dict()的高级用法实现
Nov 13 #Python
python实现的多任务版udp聊天器功能案例
Nov 13 #Python
利用python实现PSO算法优化二元函数
Nov 13 #Python
使用python制作一个解压缩软件
Nov 13 #Python
Python 脚本实现淘宝准点秒杀功能
Nov 13 #Python
基于python实现把图片转换成素描
Nov 13 #Python
You might like
php中的登陆login
2007/01/18 PHP
深入理解PHP原理之错误抑制与内嵌HTML分析
2011/05/02 PHP
Function eregi is deprecated (解决方法)
2013/06/21 PHP
ubuntu下配置nginx+php+mysql详解
2015/09/10 PHP
Zend Framework处理Json数据方法详解
2016/12/09 PHP
基于jquery实现智能表单验证操作
2016/05/09 Javascript
javascript中获取class的简单实现
2016/07/12 Javascript
微信小程序 参数传递详解
2016/10/24 Javascript
在一个页面重复使用一个js函数的方法详解
2016/12/26 Javascript
限时抢购-倒计时的完整实例(分享)
2017/09/17 Javascript
vue.js提交按钮时进行简单的if判断表达式详解
2018/08/08 Javascript
vue 集成jTopo 处理方法
2019/08/07 Javascript
基于javascript实现贪吃蛇小游戏
2019/11/25 Javascript
js中apply和call的理解与使用方法
2019/11/27 Javascript
微信小程序点击按钮动态切换input的disabled禁用/启用状态功能
2020/03/07 Javascript
vue Element左侧无限级菜单实现
2020/06/10 Javascript
跟老齐学Python之字典,你还记得吗?
2014/09/20 Python
python实现马耳可夫链算法实例分析
2015/05/20 Python
基于python代码实现简易滤除数字的方法
2018/07/17 Python
tensorflow实现图像的裁剪和填充方法
2018/07/27 Python
int在python中的含义以及用法
2019/06/27 Python
Python生成验证码、计算具体日期是一年中的第几天实例代码详解
2019/10/16 Python
Python3 实现减少可调用对象的参数个数
2019/12/20 Python
暇步士官网:Hush Puppies
2016/09/22 全球购物
全球最大的在线旅游公司:Expedia
2017/11/16 全球购物
来自圣地亚哥的实惠太阳镜:Knockaround
2018/08/27 全球购物
中专毕业个人的自荐信格式
2013/09/21 职场文书
经济管理专业自荐信
2013/12/30 职场文书
无刑事犯罪记录证明
2014/09/18 职场文书
校园文化艺术节宣传标语
2014/10/09 职场文书
优秀班集体申报材料
2014/12/25 职场文书
先进单位事迹材料
2014/12/25 职场文书
2015年幼师工作总结
2015/04/28 职场文书
社区志愿服务活动感想
2015/08/07 职场文书
python套接字socket通信
2022/04/01 Python
代码复现python目标检测yolo3详解预测
2022/05/06 Python