梅尔频率倒谱系数(mfcc)及Python实现


Posted in Python onJune 18, 2019

语音识别系统的第一步是进行特征提取,mfcc是描述短时功率谱包络的一种特征,在语音识别系统中被广泛应用。

一、mel滤波器

每一段语音信号被分为多帧,每帧信号都对应一个频谱(通过FFT变换实现),频谱表示频率与信号能量之间的关系。mel滤波器是指多个带通滤波器,在mel频率中带通滤波器的通带是等宽的,但在赫兹(Hertz)频谱内mel滤波器在低频处较密集切通带较窄,高频处较稀疏且通带较宽,旨在通过在较低频率处更具辨别性并且在较高频率处较少辨别性来模拟非线性人类耳朵对声音的感知。

赫兹频率和梅尔频率之间的关系为:

梅尔频率倒谱系数(mfcc)及Python实现

假设在梅尔频谱内,有M 个带通滤波器Hm (k),0≤m<M,每个带通滤波器的中心频率为F(m) F(m)F(m)每个带通滤波器的传递函数为:

梅尔频率倒谱系数(mfcc)及Python实现

下图为赫兹频率内的mel滤波器,带通滤波器个数为24:

梅尔频率倒谱系数(mfcc)及Python实现

二、mfcc特征

MFCC系数提取步骤:

(1)语音信号分帧处理
(2)每一帧傅里叶变换---->功率谱
(3)将短时功率谱通过mel滤波器
(4)滤波器组系数取对数
(5)将滤波器组系数的对数进行离散余弦变换(DCT)
(6)一般将第2到底13个倒谱系数保留作为短时语音信号的特征

Python实现

import wave
import numpy as np
import math
import matplotlib.pyplot as plt
from scipy.fftpack import dct

def read(data_path):
 '''读取语音信号
 '''
 wavepath = data_path
 f = wave.open(wavepath,'rb')
 params = f.getparams()
 nchannels,sampwidth,framerate,nframes = params[:4] #声道数、量化位数、采样频率、采样点数
 str_data = f.readframes(nframes) #读取音频,字符串格式
 f.close()
 wavedata = np.fromstring(str_data,dtype = np.short) #将字符串转化为浮点型数据
 wavedata = wavedata * 1.0 / (max(abs(wavedata))) #wave幅值归一化
 return wavedata,nframes,framerate

def enframe(data,win,inc):
 '''对语音数据进行分帧处理
 input:data(一维array):语音信号
   wlen(int):滑动窗长
   inc(int):窗口每次移动的长度
 output:f(二维array)每次滑动窗内的数据组成的二维array
 '''
 nx = len(data) #语音信号的长度
 try:
  nwin = len(win)
 except Exception as err:
  nwin = 1 
 if nwin == 1:
  wlen = win
 else:
  wlen = nwin
 nf = int(np.fix((nx - wlen) / inc) + 1) #窗口移动的次数
 f = np.zeros((nf,wlen)) #初始化二维数组
 indf = [inc * j for j in range(nf)]
 indf = (np.mat(indf)).T
 inds = np.mat(range(wlen))
 indf_tile = np.tile(indf,wlen)
 inds_tile = np.tile(inds,(nf,1))
 mix_tile = indf_tile + inds_tile
 f = np.zeros((nf,wlen))
 for i in range(nf):
  for j in range(wlen):
   f[i,j] = data[mix_tile[i,j]]
 return f

def point_check(wavedata,win,inc):
 '''语音信号端点检测
 input:wavedata(一维array):原始语音信号
 output:StartPoint(int):起始端点
   EndPoint(int):终止端点
 '''
 #1.计算短时过零率
 FrameTemp1 = enframe(wavedata[0:-1],win,inc)
 FrameTemp2 = enframe(wavedata[1:],win,inc)
 signs = np.sign(np.multiply(FrameTemp1,FrameTemp2)) # 计算每一位与其相邻的数据是否异号,异号则过零
 signs = list(map(lambda x:[[i,0] [i>0] for i in x],signs))
 signs = list(map(lambda x:[[i,1] [i<0] for i in x], signs))
 diffs = np.sign(abs(FrameTemp1 - FrameTemp2)-0.01)
 diffs = list(map(lambda x:[[i,0] [i<0] for i in x], diffs))
 zcr = list((np.multiply(signs, diffs)).sum(axis = 1))
 #2.计算短时能量
 amp = list((abs(enframe(wavedata,win,inc))).sum(axis = 1))
# # 设置门限
# print('设置门限')
 ZcrLow = max([round(np.mean(zcr)*0.1),3])#过零率低门限
 ZcrHigh = max([round(max(zcr)*0.1),5])#过零率高门限
 AmpLow = min([min(amp)*10,np.mean(amp)*0.2,max(amp)*0.1])#能量低门限
 AmpHigh = max([min(amp)*10,np.mean(amp)*0.2,max(amp)*0.1])#能量高门限
 # 端点检测
 MaxSilence = 8 #最长语音间隙时间
 MinAudio = 16 #最短语音时间
 Status = 0 #状态0:静音段,1:过渡段,2:语音段,3:结束段
 HoldTime = 0 #语音持续时间
 SilenceTime = 0 #语音间隙时间
 print('开始端点检测')
 StartPoint = 0
 for n in range(len(zcr)):
  if Status ==0 or Status == 1:
   if amp[n] > AmpHigh or zcr[n] > ZcrHigh:
    StartPoint = n - HoldTime
    Status = 2
    HoldTime = HoldTime + 1
    SilenceTime = 0
   elif amp[n] > AmpLow or zcr[n] > ZcrLow:
    Status = 1
    HoldTime = HoldTime + 1
   else:
    Status = 0
    HoldTime = 0
  elif Status == 2:
   if amp[n] > AmpLow or zcr[n] > ZcrLow:
    HoldTime = HoldTime + 1
   else:
    SilenceTime = SilenceTime + 1
    if SilenceTime < MaxSilence:
     HoldTime = HoldTime + 1
    elif (HoldTime - SilenceTime) < MinAudio:
     Status = 0
     HoldTime = 0
     SilenceTime = 0
    else:
     Status = 3
  elif Status == 3:
   break
  if Status == 3:
   break
 HoldTime = HoldTime - SilenceTime
 EndPoint = StartPoint + HoldTime
 return FrameTemp1[StartPoint:EndPoint]


def mfcc(FrameK,framerate,win):
 '''提取mfcc参数 
 input:FrameK(二维array):二维分帧语音信号
   framerate:语音采样频率
   win:分帧窗长(FFT点数)
 output:
 '''
 #mel滤波器
 mel_bank,w2 = mel_filter(24,win,framerate,0,0.5)
 FrameK = FrameK.T
 #计算功率谱
 S = abs(np.fft.fft(FrameK,axis = 0)) ** 2
 #将功率谱通过滤波器
 P = np.dot(mel_bank,S[0:w2,:])
 #取对数
 logP = np.log(P)
 #计算DCT系数
# rDCT = 12
# cDCT = 24
# dctcoef = []
# for i in range(1,rDCT+1):
#  tmp = [np.cos((2*j+1)*i*math.pi*1.0/(2.0*cDCT)) for j in range(cDCT)]
#  dctcoef.append(tmp)
# #取对数后做余弦变换 
# D = np.dot(dctcoef,logP)
 num_ceps = 12
 D = dct(logP,type = 2,axis = 0,norm = 'ortho')[1:(num_ceps+1),:]
 return S,mel_bank,P,logP,D
 


def mel_filter(M,N,fs,l,h):
 '''mel滤波器
 input:M(int):滤波器个数
   N(int):FFT点数
   fs(int):采样频率
   l(float):低频系数
   h(float):高频系数
 output:melbank(二维array):mel滤波器
 '''
 fl = fs * l #滤波器范围的最低频率
 fh = fs * h #滤波器范围的最高频率
 bl = 1125 * np.log(1 + fl / 700) #将频率转换为mel频率
 bh = 1125 * np.log(1 + fh /700) 
 B = bh - bl #频带宽度
 y = np.linspace(0,B,M+2) #将mel刻度等间距
 print('mel间隔',y)
 Fb = 700 * (np.exp(y / 1125) - 1) #将mel变为HZ
 print(Fb)
 w2 = int(N / 2 + 1)
 df = fs / N
 freq = [] #采样频率值
 for n in range(0,w2):
  freqs = int(n * df)
  freq.append(freqs)
 melbank = np.zeros((M,w2))
 print(freq)
 
 for k in range(1,M+1):
  f1 = Fb[k - 1]
  f2 = Fb[k + 1]
  f0 = Fb[k]
  n1 = np.floor(f1/df)
  n2 = np.floor(f2/df)
  n0 = np.floor(f0/df)
  for i in range(1,w2):
   if i >= n1 and i <= n0:
    melbank[k-1,i] = (i-n1)/(n0-n1)
   if i >= n0 and i <= n2:
    melbank[k-1,i] = (n2-i)/(n2-n0)
  plt.plot(freq,melbank[k-1,:])
 plt.show()
 return melbank,w2

if __name__ == '__main__':
 data_path = 'audio_data.wav'
 win = 256
 inc = 80
 wavedata,nframes,framerate = read(data_path)
 FrameK = point_check(wavedata,win,inc)
 S,mel_bank,P,logP,D = mfcc(FrameK,framerate,win)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python3写入文件常用方法实例分析
May 22 Python
Python的for和break循环结构中使用else语句的技巧
May 24 Python
Python中的日期时间处理详解
Nov 17 Python
对python cv2批量灰度图片并保存的实例讲解
Nov 09 Python
python实现简易数码时钟
Feb 19 Python
pandas DataFrame 警告(SettingWithCopyWarning)的解决
Jul 23 Python
Python Django Vue 项目创建过程详解
Jul 29 Python
Python绘制热力图示例
Sep 27 Python
利用PyCharm操作Github(仓库新建、更新,代码回滚)
Dec 18 Python
logging level级别介绍
Feb 21 Python
Selenium启动Chrome时配置选项详解
Mar 18 Python
python自动化之如何利用allure生成测试报告
May 02 Python
Python生成一个迭代器的实操方法
Jun 18 #Python
利用anaconda保证64位和32位的python共存
Mar 09 #Python
python获取地震信息 微信实时推送
Jun 18 #Python
python实现月食效果实例代码
Jun 18 #Python
详解Python3中setuptools、Pip安装教程
Jun 18 #Python
Python生成指定数量的优惠码实操内容
Jun 18 #Python
python实现文件的备份流程详解
Jun 18 #Python
You might like
php 全文搜索和替换的实现代码
2008/07/29 PHP
精通php的十大要点(上)
2009/02/04 PHP
php中用socket模拟http中post或者get提交数据的示例代码
2013/08/08 PHP
php实现telnet功能示例
2014/04/08 PHP
FLASH 广告之外的链接
2008/12/16 Javascript
javascript 面向对象编程基础 多态
2009/08/21 Javascript
multiSteps 基于Jquery的多步骤滑动切换插件
2011/07/22 Javascript
js判断选择的时间是否大于今天的代码
2013/08/20 Javascript
禁止IE用右键的JS代码
2013/12/30 Javascript
JS下载文件|无刷新下载文件示例代码
2014/04/17 Javascript
ANGULARJS中使用JQUERY分页控件
2015/09/16 Javascript
js老生常谈之this,constructor ,prototype全面解析
2016/04/05 Javascript
分享jQuery封装好的一些常用操作
2016/07/28 Javascript
JS获取鼠标选中的文字
2016/08/10 Javascript
JS Canvas定时器模拟动态加载动画
2016/09/17 Javascript
JavaScript基于自定义函数判断变量类型的实现方法
2016/11/23 Javascript
javascript中对象的定义、使用以及对象和原型链操作小结
2016/12/14 Javascript
javascript输出AscII码扩展集中的字符方法
2016/12/26 Javascript
javascript实现简易计算器
2017/02/01 Javascript
JS二级菜单不同实现方法分析【4种方法】
2018/12/21 Javascript
详解Vue、element-ui、axios实现省市区三级联动
2019/05/07 Javascript
微信小程序webview 脚手架使用详解
2019/07/22 Javascript
vue使用高德地图点击下钻上浮效果的实现思路
2019/10/12 Javascript
记录微信小程序 height: calc(xx - xx);无效问题
2019/12/30 Javascript
ES6如何用一句代码实现函数的柯里化
2020/01/18 Javascript
Zabbix实现微信报警功能
2016/10/09 Python
Python如何快速实现分布式任务
2017/07/06 Python
关于django 数据库迁移(migrate)应该知道的一些事
2018/05/27 Python
tensorflow实现加载mnist数据集
2018/09/08 Python
python 读写excel文件操作示例【附源码下载】
2019/06/19 Python
HTML5 weui使用笔记
2019/11/21 HTML / CSS
日本钓鱼渔具和户外用品网上商店:naturum
2016/08/07 全球购物
金融专业个人求职信范文
2013/11/28 职场文书
幼儿教师师德演讲稿
2014/05/06 职场文书
厂区绿化方案
2014/05/08 职场文书
如何设计高效合理的MySQL查询语句
2021/05/26 MySQL