使用Python的SymPy库解决数学运算问题的方法


Posted in Python onMarch 27, 2019

摘要:在学习与科研中,经常会遇到一些数学运算问题,使用计算机完成运算具有速度快和准确性高的优势。Python的Numpy包具有强大的科学运算功能,且具有其他许多主流科学计算语言不具备的免费、开源、轻量级和灵活的特点。本文使用Python语言的NumPy库,解决数学运算问题中的线性方程组问题、积分问题、微分问题及矩阵化简问题,结果准确快捷,具有一定的借鉴意义。

1.Sympy库简介

SymPy一个用于符号型数学计算(symbolic mathematics)的Python库。它旨在成为一个功能齐全的计算机代数系统(Computer Algebra System,CAS),同时保持代码简洁、易于理解和扩展。SymPy完全是用Python写的,并不需要外部的库。

本文选择Sympy库的原因在于:

  • 免费:该库基于BSD开源许可,免费且开源;
  • 基于Python:该库完全是用Python写就,并以Python作为该库操作语言;
  • 轻量级:为了使Sympy简单易用,该库仅基于mpmath库(一个纯Python库,用于浮点运算);
  • 灵活性:除了用作交互工具,还可插入其他应用或软件拓展功能中。

具体说来,如果x与y未曾赋值,那么下列语句就会报错

#测试语句
print(x+y)

而符号运算则不同,符号运算多用于公式推导,不需要赋值,此时使用Sympy进行符号运算便具有方便快捷的优势,如下述语句便不会报错。

#测试语句
x=Symbol('x')
y=Symbol('y')
print(x+y)

2 SymPy库解决数学运算问题实现

2.1 求解线性方程组

解方程的功能主要是使用Sympy中solve函数实现。以式(1)为例,求解过程如下:

(1) 符号表示

SymPy库中使用Symbol函数定义符号变量,

from sympy import *
x=Symbol('x')
y=Symbol('y')
 
#或者用如下语句
x,y=Symbol('x y')#第二个用空格隔开

(2)方程表示

使用代码表示数学符号与手写体的数学运算符号存在一定的差异,下面列举常用的运算符:

  • 加号
  • 加号 +
  • 减号 -
  • 除号 /
  • 乘号 *
  • 指数 **
  • 对数 log()
  • e的指数次幂 exp()

对于长的表达式,如果不确定运算符的优先级,可以加入小括号提升其优先级。由于需要将表达式都转化成右端等于0,这里把常数3和7移到等式左边。题目中表达式可表示为:

2*x-y-3=0
3*x+y-7=0

(3)使用Solve函数解方程

在使用Solve函数解方程之前,我们先来看一下Solve函数的定义。Solve函数的第一个参数是要解的方程,要求右端等于0,第二个参数是未知数。

对于式(1)的求解,代码如下:

from sympy import *
x = Symbol('x')
y = Symbol('y')
print(solve([2*x-y-3,3*x+y-7],[x,y]))

2.2 求解微积分问题

2.2.1 求解极限问题

在2.1中通过一个简单的二元一次方程组求解熟悉了该库求解数学问题的基本过程,下面本文通过示例,讲解使用SymPy库求解微积分的过程。

求解式(2)所示的极限问题,需要用到limit函数求极限。

(1)符号及方程表示

引入Sympy库并定义n为符号变量与2.1中一致。

from sympy import *
n = Symbol('n')
s = ((n+3)/(n+2))**n

(2)利用limit函数求极限

首先我们介绍limit函数的调用格式:limit(e, z, z0, dir='+'),e为任意表达式,表示求取e(z)在点z0处的极限,dir='+'表示取右极限,die='-'则表示取左极限。则上式的求解代码可表示如下:

from sympy import *
n = Symbol('n')
s = ((n+3)/(n+2))**n

print(limit(s,n,oo)) #无穷的表示方法是两个小写的字母o

2.2.2 求解定积分

(1)符号表示

from sympy import *
t = Symbol(t)
x = Symbol(x)

(2)方程表示

m = integrate(sin(t)/(pi-t),(t,0,x))
n = integrate(m,(x,0,pi))

完整代码如下:

from sympy import *
t = Symbol(t)
x = Symbol(x)
m = integrate(sin(t)/(pi-t),(t,0,x))
n = integrate(m,(x,0,pi))
print(n)

2.2.3 求解微分问题

如求取的通解

(1)符号表示

这里与之前不同的是增加了函数的表示(用f(x)表示y),即例题中的y还有微分表示

from sympy import *
f = Function('f')
x = Symbol('x')

y'的表示方法由以下代码组成

diff(f(x),x)

这里对diff函数稍作介绍:

上面是求一阶导的方法,求解高阶导的方法如下所示:

>>> diff(x**3,x)
3*x**2
>>> diff(x**3,x,1)
3*x**2
>>> diff(x**3,x,2)
6*x
>>> diff(x**3,x,3)
6
>>> diff(x**3,x,4)
0

即改变第三个参数即可。

下面继续我们的解题过程。

#左端
diff(f(x),x)
#看一下
print(diff(f(x),x))
 
#result
#d
#--(f(x))
#dx
 
#右端
2*f(x)*x

用dsolve函数解微分方程

dsolve函数是用来解决微分方程(differential equation)的函数。

函数的一个用法为:

dsolve(eq, f(x))

第一个参数为微分方程(要先将等式移项为右端为0的形式)。第二个参数为要解的函数(在微分方程中)

举个例子:

>>> from sympy import *
>>> f = Function('f')
>>> x = Symbol('x')
>>> pprint(2*x-diff(f(x),x))
   d
2*x - --(f(x))
   dx
>>> dsolve(2*x - diff(f(x),x), f(x))
#result
#Eq(f(x), C1 + x**2)

这样,我们可以将我们要解的题目,用以下代码表示。

dsolve(diff(f(x),x) - 2*f(x)*x, f(x))

结果为:

Eq(f(x), C1*exp(x**2))
#即f(x) = C1*exp(x**2)

对比答案可以发现正确。

完整代码:

from sympy import *
f = function('f')
x = Symbol('x')
print(dsolve(diff(f(x),x)-2*f(x)*x,f(x))

2.2.4 矩阵化简

平时线性代数问题中我们会遇到化简问题,虽然不算难,但着实麻烦。而且,出一点错就会导致

结果出错。不过好运的是SymPy提供了相关的支持。

例题:

符号表示与矩阵表示

from sympy import *
x1,x2,x3 = symbols('x1 x2 x3')
a11,a12,a13,a22,a23,a33 = symbols('a11 a12 a13 a22 a23 a33')
m = Matrix([[x1,x2,x3]])
n = Matrix([[a11,a12,a13],[a12,a22,a23],[a13,a23,a33]])
v = Matrix([[x1],[x2],[x3]])

注意m的表示,需要有两个中括号

化简实现

print(m*n*v)

得到的是:

Matrix([[x1*(a11*x1 + a12*x2 + a13*x3) + x2*(a12*x1 + a22*x2 + a23*x3) + x3*(a13*x1 + a23*x2 + a33*x3)]])

使用

f = m * n * v
print f[0]

可以进一步得到化简后的式子

也许你要问我要化简后在计算怎么办?下面我就举个例子。

如果上式中x1,x2,x3均等于1,则可这样代入。

from sympy import *
x1,x2,x3 = symbols('x1 x2 x3')
a11,a12,a13,a22,a23,a33 = symbols('a11 a12 a13 a22 a23 a33')
m = Matrix([[x1, x2, x3]])
n = Matrix([[a11, a12, a13], [a12, a22, a23], [a13, a23, a33]])
v = Matrix([[x1], [x2], [x3]])
f = m * n * v
print f[0].subs({x1:1, x2:1, x3:1})

可得

a11 + 2*a12 + 2*a13 + a22 + 2*a23 + a33

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
用map函数来完成Python并行任务的简单示例
Apr 02 Python
python3.5使用tkinter制作记事本
Jun 20 Python
pycharm下打开、执行并调试scrapy爬虫程序的方法
Nov 29 Python
使用Python快速制作可视化报表的方法
Feb 03 Python
python支付宝支付示例详解
Aug 22 Python
python自动化UI工具发送QQ消息的实例
Aug 27 Python
python pillow模块使用方法详解
Aug 30 Python
Python3操作MongoDB增册改查等方法详解
Feb 10 Python
python利用Excel读取和存储测试数据完成接口自动化教程
Apr 30 Python
python如何写出表白程序
Jun 01 Python
python 使用多线程创建一个Buffer缓存器的实现思路
Jul 02 Python
教你使用Python pypinyin库实现汉字转拼音
May 27 Python
超简单使用Python换脸实例
Mar 27 #Python
python爬虫爬取微博评论案例详解
Mar 27 #Python
Python实现查找字符串数组最长公共前缀示例
Mar 27 #Python
详解python中@的用法
Mar 27 #Python
详解python列表生成式和列表生成式器区别
Mar 27 #Python
Python3实现的回文数判断及罗马数字转整数算法示例
Mar 27 #Python
详解Django项目中模板标签及模板的继承与引用(网站中快速布置广告)
Mar 27 #Python
You might like
PHP安装问题
2006/10/09 PHP
php中使用redis队列操作实例代码
2013/02/07 PHP
一波PHP中cURL库的常见用法代码示例
2016/05/06 PHP
thinkPHP实现递归循环栏目并按照树形结构无限极输出的方法
2016/05/19 PHP
PHP简单实现数字分页功能示例
2016/08/24 PHP
PHP实现权限管理功能示例
2017/09/22 PHP
javascript 设计模式之单体模式 面向对象学习基础
2010/04/18 Javascript
HTML DOM的nodeType值介绍
2011/03/31 Javascript
JS和函数式语言的三特性
2014/03/05 Javascript
JavaScript的Backbone.js框架环境搭建及Hellow world示例
2016/05/07 Javascript
Node.js环境下JavaScript实现单链表与双链表结构
2016/06/12 Javascript
vue如何在自定义组件中使用v-model
2018/05/14 Javascript
React学习笔记之高阶组件应用
2018/06/02 Javascript
Vue验证码60秒倒计时功能简单实例代码
2018/06/22 Javascript
微信小程序使用Vant Weapp组件库的方法步骤
2019/08/01 Javascript
详解Vscode中使用Eslint终极配置大全
2019/11/08 Javascript
JavaScript实现手机号码 3-4-4格式并控制新增和删除时光标的位置
2020/06/02 Javascript
ES6 Generator基本使用方法示例
2020/06/06 Javascript
详解JavaScript中的链式调用
2020/11/27 Javascript
基于vue项目设置resolves.alias: '@'路径并适配webstorm
2020/12/02 Vue.js
JavaScript代码实现微博批量取消关注功能
2021/02/05 Javascript
[02:51]2014DOTA2 TI小组赛总结中国军团全部进军钥匙球馆
2014/07/15 DOTA
python版飞机大战代码分享
2018/11/20 Python
PyCharm+PySpark远程调试的环境配置的方法
2018/11/29 Python
Python写一个基于MD5的文件监听程序
2019/03/11 Python
django xadmin action兼容自定义model权限教程
2020/03/30 Python
解决python对齐错误的方法
2020/07/16 Python
Python json解析库jsonpath原理及使用示例
2020/11/25 Python
使用html2canvas将页面转成图并使用用canvas2image下载
2019/04/04 HTML / CSS
自动化工程专业个人应聘自荐信
2013/09/26 职场文书
办理退休介绍信
2014/01/09 职场文书
2014年后勤工作总结
2014/11/18 职场文书
考试作弊检讨书
2015/01/27 职场文书
网络妈妈观后感
2015/06/08 职场文书
Python作用域和名称空间的详细介绍
2022/04/13 Python
HttpClient实现表单提交上传文件
2022/08/14 Java/Android