PyTorch上搭建简单神经网络实现回归和分类的示例


Posted in Python onApril 28, 2018

本文介绍了PyTorch上搭建简单神经网络实现回归和分类的示例,分享给大家,具体如下:

PyTorch上搭建简单神经网络实现回归和分类的示例

一、PyTorch入门

1. 安装方法

登录PyTorch官网,http://pytorch.org,可以看到以下界面:

PyTorch上搭建简单神经网络实现回归和分类的示例

按上图的选项选择后即可得到Linux下conda指令:

conda install pytorch torchvision -c soumith

目前PyTorch仅支持MacOS和Linux,暂不支持Windows。安装 PyTorch 会安装两个模块,一个是torch,一个 torchvision, torch 是主模块,用来搭建神经网络的,torchvision 是辅模块,有数据库,还有一些已经训练好的神经网络等着你直接用,比如 (VGG, AlexNet, ResNet)。

2. Numpy与Torch

torch_data = torch.from_numpy(np_data)可以将numpy(array)格式转换为torch(tensor)格式;torch_data.numpy()又可以将torch的tensor格式转换为numpy的array格式。注意Torch的Tensor和numpy的array会共享他们的存储空间,修改一个会导致另外的一个也被修改。

对于1维(1-D)的数据,numpy是以行向量的形式打印输出,而torch是以列向量的形式打印输出的。

其他例如sin, cos, abs,mean等numpy中的函数在torch中用法相同。需要注意的是,numpy中np.matmul(data, data)和data.dot(data)矩阵相乘会得到相同结果;torch中torch.mm(tensor, tensor)是矩阵相乘的方法,得到一个矩阵,tensor.dot(tensor)会把tensor转换为1维的tensor,然后逐元素相乘后求和,得到与一个实数。

相关代码:

import torch 
import numpy as np 
 
np_data = np.arange(6).reshape((2, 3)) 
torch_data = torch.from_numpy(np_data) # 将numpy(array)格式转换为torch(tensor)格式 
tensor2array = torch_data.numpy()  
print( 
  '\nnumpy array:\n', np_data,  
  '\ntorch tensor:', torch_data,  
  '\ntensor to array:\n', tensor2array,  
) # torch数据格式在print的时候前后自动添加换行符 
 
# abs 
data = [-1, -2, 2, 2] 
tensor = torch.FloatTensor(data)  
print( 
  '\nabs', 
  '\nnumpy: \n', np.abs(data),     
  '\ntorch: ', torch.abs(tensor)  
) # 1维的数据,numpy是行向量形式显示,torch是列向量形式显示 
 
# sin 
print( 
  '\nsin', 
  '\nnumpy: \n', np.sin(data),    
  '\ntorch: ', torch.sin(tensor)  
) 
 
# mean 
print( 
  '\nmean', 
  '\nnumpy: ', np.mean(data),   
  '\ntorch: ', torch.mean(tensor)  
) 
 
# 矩阵相乘 
data = [[1,2], [3,4]] 
tensor = torch.FloatTensor(data)  
 
print( 
  '\nmatrix multiplication (matmul)', 
  '\nnumpy: \n', np.matmul(data, data),   
  '\ntorch: ', torch.mm(tensor, tensor)  
) 
 
data = np.array(data) 
print( 
  '\nmatrix multiplication (dot)', 
  '\nnumpy: \n', data.dot(data),    
  '\ntorch: ', tensor.dot(tensor)   
)

3. Variable

PyTorch中的神经网络来自于autograd包,autograd包提供了Tensor所有操作的自动求导方法。

autograd.Variable这是这个包中最核心的类。可以将Variable理解为一个装有tensor的容器,它包装了一个Tensor,并且几乎支持所有的定义在其上的操作。一旦完成运算,便可以调用 .backward()来自动计算出所有的梯度。也就是说只有把tensor置于Variable中,才能在神经网络中实现反向传递、自动求导等运算。

可以通过属性 .data 来访问原始的tensor,而关于这一Variable的梯度则可通过 .grad属性查看。

相关代码:

import torch 
from torch.autograd import Variable 
 
tensor = torch.FloatTensor([[1,2],[3,4]]) 
variable = Variable(tensor, requires_grad=True) 
# 打印展示Variable类型 
print(tensor) 
print(variable) 
 
t_out = torch.mean(tensor*tensor) # 每个元素的^ 2 
v_out = torch.mean(variable*variable) 
print(t_out) 
print(v_out) 
 
v_out.backward() # Variable的误差反向传递 
 
# 比较Variable的原型和grad属性、data属性及相应的numpy形式 
print('variable:\n', variable) 
# v_out = 1/4 * sum(variable*variable) 这是计算图中的 v_out 计算步骤 
# 针对于 v_out 的梯度就是, d(v_out)/d(variable) = 1/4*2*variable = variable/2 
print('variable.grad:\n', variable.grad) # Variable的梯度 
print('variable.data:\n', variable.data) # Variable的数据 
print(variable.data.numpy()) #Variable的数据的numpy形式

部分输出结果:

variable:
Variable containing:
1 2
3 4
[torch.FloatTensor of size 2x2]
variable.grad:
Variable containing:
0.5000 1.0000
1.5000 2.0000
[torch.FloatTensor of size 2x2]
variable.data:
1 2
3 4
[torch.FloatTensor of size 2x2]
[[ 1. 2.]
[ 3. 4.]]

4. 激励函数activationfunction

Torch的激励函数都在torch.nn.functional中,relu,sigmoid, tanh, softplus都是常用的激励函数。

PyTorch上搭建简单神经网络实现回归和分类的示例

相关代码:

import torch 
import torch.nn.functional as F 
from torch.autograd import Variable 
import matplotlib.pyplot as plt 
 
x = torch.linspace(-5, 5, 200) 
x_variable = Variable(x) #将x放入Variable 
x_np = x_variable.data.numpy() 
 
# 经过4种不同的激励函数得到的numpy形式的数据结果 
y_relu = F.relu(x_variable).data.numpy() 
y_sigmoid = F.sigmoid(x_variable).data.numpy() 
y_tanh = F.tanh(x_variable).data.numpy() 
y_softplus = F.softplus(x_variable).data.numpy() 
 
plt.figure(1, figsize=(8, 6)) 
 
plt.subplot(221) 
plt.plot(x_np, y_relu, c='red', label='relu') 
plt.ylim((-1, 5)) 
plt.legend(loc='best') 
 
plt.subplot(222) 
plt.plot(x_np, y_sigmoid, c='red', label='sigmoid') 
plt.ylim((-0.2, 1.2)) 
plt.legend(loc='best') 
 
plt.subplot(223) 
plt.plot(x_np, y_tanh, c='red', label='tanh') 
plt.ylim((-1.2, 1.2)) 
plt.legend(loc='best') 
 
plt.subplot(224) 
plt.plot(x_np, y_softplus, c='red', label='softplus') 
plt.ylim((-0.2, 6)) 
plt.legend(loc='best') 
 
plt.show()

二、PyTorch实现回归

先看完整代码:

import torch 
from torch.autograd import Variable 
import torch.nn.functional as F 
import matplotlib.pyplot as plt 
 
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # 将1维的数据转换为2维数据 
y = x.pow(2) + 0.2 * torch.rand(x.size()) 
 
# 将tensor置入Variable中 
x, y = Variable(x), Variable(y) 
 
#plt.scatter(x.data.numpy(), y.data.numpy()) 
#plt.show() 
 
# 定义一个构建神经网络的类 
class Net(torch.nn.Module): # 继承torch.nn.Module类 
  def __init__(self, n_feature, n_hidden, n_output): 
    super(Net, self).__init__() # 获得Net类的超类(父类)的构造方法 
    # 定义神经网络的每层结构形式 
    # 各个层的信息都是Net类对象的属性 
    self.hidden = torch.nn.Linear(n_feature, n_hidden) # 隐藏层线性输出 
    self.predict = torch.nn.Linear(n_hidden, n_output) # 输出层线性输出 
 
  # 将各层的神经元搭建成完整的神经网络的前向通路 
  def forward(self, x): 
    x = F.relu(self.hidden(x)) # 对隐藏层的输出进行relu激活 
    x = self.predict(x) 
    return x 
 
# 定义神经网络 
net = Net(1, 10, 1) 
print(net) # 打印输出net的结构 
 
# 定义优化器和损失函数 
optimizer = torch.optim.SGD(net.parameters(), lr=0.5) # 传入网络参数和学习率 
loss_function = torch.nn.MSELoss() # 最小均方误差 
 
# 神经网络训练过程 
plt.ion()  # 动态学习过程展示 
plt.show() 
 
for t in range(300): 
  prediction = net(x) # 把数据x喂给net,输出预测值 
  loss = loss_function(prediction, y) # 计算两者的误差,要注意两个参数的顺序 
  optimizer.zero_grad() # 清空上一步的更新参数值 
  loss.backward() # 误差反相传播,计算新的更新参数值 
  optimizer.step() # 将计算得到的更新值赋给net.parameters() 
 
  # 可视化训练过程 
  if (t+1) % 10 == 0: 
    plt.cla() 
    plt.scatter(x.data.numpy(), y.data.numpy()) 
    plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) 
    plt.text(0.5, 0, 'L=%.4f' % loss.data[0], fontdict={'size': 20, 'color': 'red'}) 
    plt.pause(0.1)

首先创建一组带噪声的二次函数拟合数据,置于Variable中。定义一个构建神经网络的类Net,继承torch.nn.Module类。Net类的构造方法中定义输入神经元、隐藏层神经元、输出神经元数量的参数,通过super()方法获得Net父类的构造方法,以属性的方式定义Net的各个层的结构形式;定义Net的forward()方法将各层的神经元搭建成完整的神经网络前向通路。

定义好Net类后,定义神经网络实例,Net类实例可以直接print打印输出神经网络的结构信息。接着定义神经网络的优化器和损失函数。定义好这些后就可以进行训练了。optimizer.zero_grad()、loss.backward()、optimizer.step()分别是清空上一步的更新参数值、进行误差的反向传播并计算新的更新参数值、将计算得到的更新值赋给net.parameters()。循环迭代训练过程。

运行结果:

Net (

 (hidden): Linear (1 -> 10)

 (predict): Linear (10 -> 1)

)

PyTorch上搭建简单神经网络实现回归和分类的示例

三、PyTorch实现简单分类

完整代码:

import torch 
from torch.autograd import Variable 
import torch.nn.functional as F 
import matplotlib.pyplot as plt 
 
# 生成数据 
# 分别生成2组各100个数据点,增加正态噪声,后标记以y0=0 y1=1两类标签,最后cat连接到一起 
n_data = torch.ones(100,2) 
# torch.normal(means, std=1.0, out=None) 
x0 = torch.normal(2*n_data, 1) # 以tensor的形式给出输出tensor各元素的均值,共享标准差 
y0 = torch.zeros(100) 
x1 = torch.normal(-2*n_data, 1) 
y1 = torch.ones(100) 
 
x = torch.cat((x0, x1), 0).type(torch.FloatTensor) # 组装(连接) 
y = torch.cat((y0, y1), 0).type(torch.LongTensor) 
 
# 置入Variable中 
x, y = Variable(x), Variable(y) 
 
class Net(torch.nn.Module): 
  def __init__(self, n_feature, n_hidden, n_output): 
    super(Net, self).__init__() 
    self.hidden = torch.nn.Linear(n_feature, n_hidden) 
    self.out = torch.nn.Linear(n_hidden, n_output) 
 
  def forward(self, x): 
    x = F.relu(self.hidden(x)) 
    x = self.out(x) 
    return x 
 
net = Net(n_feature=2, n_hidden=10, n_output=2) 
print(net) 
 
optimizer = torch.optim.SGD(net.parameters(), lr=0.012) 
loss_func = torch.nn.CrossEntropyLoss() 
 
plt.ion() 
plt.show() 
 
for t in range(100): 
  out = net(x) 
  loss = loss_func(out, y) # loss是定义为神经网络的输出与样本标签y的差别,故取softmax前的值 
 
  optimizer.zero_grad() 
  loss.backward() 
  optimizer.step() 
 
  if t % 2 == 0: 
    plt.cla() 
    # 过了一道 softmax 的激励函数后的最大概率才是预测值 
    # torch.max既返回某个维度上的最大值,同时返回该最大值的索引值 
    prediction = torch.max(F.softmax(out), 1)[1] # 在第1维度取最大值并返回索引值 
    pred_y = prediction.data.numpy().squeeze() 
    target_y = y.data.numpy() 
    plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn') 
    accuracy = sum(pred_y == target_y)/200 # 预测中有多少和真实值一样 
    plt.text(1.5, -4, 'Accu=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'}) 
    plt.pause(0.1) 
 
plt.ioff() 
plt.show()

神经网络结构部分的Net类与前文的回归部分的结构相同。

需要注意的是,在循环迭代训练部分,out定义为神经网络的输出结果,计算误差loss时不是使用one-hot形式的,loss是定义在out与y上的torch.nn.CrossEntropyLoss(),而预测值prediction定义为out经过Softmax后(将结果转化为概率值)的结果。

运行结果:

Net (

 (hidden): Linear (2 -> 10)

  (out):Linear (10 -> 2)

)

PyTorch上搭建简单神经网络实现回归和分类的示例

四、补充知识

1. super()函数

在定义Net类的构造方法的时候,使用了super(Net,self).__init__()语句,当前的类和对象作为super函数的参数使用,这条语句的功能是使Net类的构造方法获得其超类(父类)的构造方法,不影响对Net类单独定义构造方法,且不必关注Net类的父类到底是什么,若需要修改Net类的父类时只需修改class语句中的内容即可。

2. torch.normal()

torch.normal()可分为三种情况:(1)torch.normal(means,std, out=None)中means和std都是Tensor,两者的形状可以不必相同,但Tensor内的元素数量必须相同,一一对应的元素作为输出的各元素的均值和标准差;(2)torch.normal(mean=0.0, std, out=None)中mean是一个可定义的float,各个元素共享该均值;(3)torch.normal(means,std=1.0, out=None)中std是一个可定义的float,各个元素共享该标准差。

3. torch.cat(seq, dim=0)

torch.cat可以将若干个Tensor组装连接起来,dim指定在哪个维度上进行组装。

4. torch.max()

(1)torch.max(input)→ float

input是tensor,返回input中的最大值float。

(2)torch.max(input,dim, keepdim=True, max=None, max_indices=None) -> (Tensor, LongTensor)

同时返回指定维度=dim上的最大值和该最大值在该维度上的索引值。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
在Windows8上的搭建Python和Django环境
Jul 03 Python
wxpython中Textctrl回车事件无效的解决方法
Jul 21 Python
Python自定义进程池实例分析【生产者、消费者模型问题】
Sep 19 Python
200行自定义python异步非阻塞Web框架
Mar 15 Python
Python爬虫爬取一个网页上的图片地址实例代码
Jan 16 Python
python读取hdfs上的parquet文件方式
Jun 06 Python
python GUI模拟实现计算器
Jun 22 Python
浅谈keras中loss与val_loss的关系
Jun 22 Python
Python 抓取数据存储到Redis中的操作
Jul 16 Python
Pycharm中如何关掉python console
Oct 27 Python
python中复数的共轭复数知识点总结
Dec 06 Python
详解python3类型注释annotations实用案例
Jan 20 Python
TensorFlow实现非线性支持向量机的实现方法
Apr 28 #Python
python 通过logging写入日志到文件和控制台的实例
Apr 28 #Python
Python实现合并同一个文件夹下所有PDF文件的方法示例
Apr 28 #Python
用TensorFlow实现多类支持向量机的示例代码
Apr 28 #Python
详谈python在windows中的文件路径问题
Apr 28 #Python
TensorFlow实现随机训练和批量训练的方法
Apr 28 #Python
对python中的logger模块全面讲解
Apr 28 #Python
You might like
PHP如何解决微信文章图片防盗链
2020/12/09 PHP
javascript 面向对象的JavaScript类
2010/05/04 Javascript
jQuery中获取Radio元素值的方法
2013/07/02 Javascript
jQuery多级弹出菜单插件ZoneMenu
2014/12/18 Javascript
在JavaScript中处理数组之reverse()方法的使用
2015/06/09 Javascript
跟我学习javascript的this关键字
2020/05/28 Javascript
jQuery代码实现表格中点击相应行变色功能
2016/05/09 Javascript
bootstrapfileinput实现文件自动上传
2016/11/08 Javascript
微信小程序之GET请求的实例详解
2017/09/29 Javascript
微信小程序发布新版本时自动提示用户更新的方法
2019/06/07 Javascript
vue中nextTick用法实例
2019/09/11 Javascript
VUE 直接通过JS 修改html对象的值导致没有更新到数据中解决方法分析
2019/12/02 Javascript
[08:04]TI4西雅图DOTA2前线报道 海涛探访各路人马
2014/07/09 DOTA
Python正则表达式教程之二:捕获篇
2017/03/02 Python
Python操作使用MySQL数据库的实例代码
2017/05/25 Python
python分布式环境下的限流器的示例
2017/10/26 Python
tornado 多进程模式解析
2018/01/15 Python
pycham查看程序执行的时间方法
2018/11/29 Python
Python编程实现tail-n查看日志文件的方法
2019/07/08 Python
对python中不同模块(函数、类、变量)的调用详解
2019/07/16 Python
vscode 配置 python3开发环境的方法
2019/09/19 Python
Cython编译python为so 代码加密示例
2019/12/23 Python
flask 框架操作MySQL数据库简单示例
2020/02/02 Python
Pycharm及python安装详细步骤及PyCharm配置整理(推荐)
2020/07/31 Python
anaconda3安装及jupyter环境配置全教程
2020/08/24 Python
详解解决jupyter不能使用pytorch的问题
2021/02/18 Python
python绘制汉诺塔
2021/03/01 Python
Sofmap官网:日本著名的数码电器专卖店
2017/05/19 全球购物
ASOS比利时:英国线上零售商及自有品牌
2018/07/29 全球购物
Juicy Couture Beauty官方网站:香水和化妆品
2019/03/12 全球购物
英国户外装备商店:Ultimate Outdoors
2019/05/07 全球购物
咖啡书吧创业计划书
2014/01/13 职场文书
学习型党组织建设经验材料
2014/05/26 职场文书
学位证书委托书
2014/09/30 职场文书
大学生见习报告总结
2014/11/04 职场文书
Python字符串格式化方式
2022/04/07 Python