python分布式环境下的限流器的示例


Posted in Python onOctober 26, 2017

项目中用到了限流,受限于一些实现方式上的东西,手撕了一个简单的服务端限流器。

服务端限流和客户端限流的区别,简单来说就是:

1)服务端限流

对接口请求进行限流,限制的是单位时间内请求的数量,目的是通过有损来换取高可用。

例如我们的场景是,有一个服务接收请求,处理之后,将数据bulk到Elasticsearch中进行索引存储,bulk索引是一个很耗费资源的操作,如果遭遇到请求流量激增,可能会压垮Elasticsearch(队列阻塞,内存激增),所以需要对流量的峰值做一个限制。

2)客户端限流

限制的是客户端进行访问的次数。

例如,线程池就是一个天然的限流器。限制了并发个数max_connection,多了的就放到缓冲队列里排队,排队搁不下了>queue_size就扔掉。

本文是服务端限流器。

我这个限流器的优点:

1)简单
2)管事

缺点:

1)不能做到平滑限流

例如大家尝尝说的令牌桶算法和漏桶算法(我感觉这两个算法本质上都是一个事情)可以实现平滑限流。什么是平滑限流?举个栗子,我们要限制5秒钟内访问数不超过1000,平滑限流能做到,每秒200个,5秒钟不超过1000,很平衡;非平滑限流可能,在第一秒就访问了1000次,之后的4秒钟全部限制住。•2)不灵活

只实现了秒级的限流。

支持两个场景:

1)对于单进程多线程场景(使用线程安全的Queue做全局变量)

这种场景下,只部署了一个实例,对这个实例进行限流。在生产环境中用的很少。

2)对于多进程分布式场景(使用redis做全局变量)

多实例部署,一般来说生产环境,都是这样的使用场景。

在这样的场景下,需要对流量进行整体的把控。例如,user服务部署了三个实例,对外暴露query接口,要做的是对接口级的流量限制,也就是对query这个接口整体允许多大的峰值,而不去关心到底负载到哪个实例。

题外话,这个可以通过nginx做。 

下面说一下限流器的实现吧。 

1、接口BaseRateLimiter

按照我的思路,先定义一个接口,也可以叫抽象类。

初始化的时候,要配置rate,限流器的限速。

提供一个抽象方法,acquire(),调用这个方法,返回是否限制流量。

class BaseRateLimiter(object):

  __metaclass__ = abc.ABCMeta

  @abc.abstractmethod
  def __init__(self, rate):
    self.rate = rate

  @abc.abstractmethod
  def acquire(self, count):
    return

2、单进程多线程场景的限流ThreadingRateLimiter

继承BaseRateLimiter抽象类,使用线程安全的Queue作为全局变量,来消除竞态影响。

后台有个进程每秒钟清空一次queue;

当请求来了,调用acquire函数,queue incr一次,如果大于限速了,就返回限制。否则就允许访问。

class ThreadingRateLimiter(BaseRateLimiter):

  def __init__(self, rate):
    BaseRateLimiter.__init__(self, rate)
    self.queue = Queue.Queue()
    threading.Thread(target=self._clear_queue).start()

  def acquire(self, count=1):
    self.queue.put(1, block=False)
    return self.queue.qsize() < self.rate

  def _clear_queue(self):
    while 1:
      time.sleep(1)
      self.queue.queue.clear()

2、分布式场景下的限流DistributeRateLimiter

继承BaseRateLimiter抽象类,使用外部存储作为共享变量,外部存储的访问方式为cache。

class DistributeRateLimiter(BaseRateLimiter):

  def __init__(self, rate, cache):
    BaseRateLimiter.__init__(self, rate)
    self.cache = cache

  def acquire(self, count=1, expire=3, key=None, callback=None):
    try:
      if isinstance(self.cache, Cache):
        return self.cache.fetchToken(rate=self.rate, count=count, expire=expire, key=key)
    except Exception, ex:
      return True

为了解耦和灵活性,我们实现了Cache类。提供一个抽象方法getToken()

如果你使用redis的话,你就继承Cache抽象类,实现通过redis获取令牌的方法。

如果使用mysql的话,你就继承Cache抽象类,实现通过mysql获取令牌的方法。

cache抽象类

class Cache(object):

  __metaclass__ = abc.ABCMeta

  @abc.abstractmethod
  def __init__(self):
    self.key = "DEFAULT"
    self.namespace = "RATELIMITER"

  @abc.abstractmethod
  def fetchToken(self, rate, key=None):
    return

给出一个redis的实现RedisTokenCache

每秒钟创建一个key,并且对请求进行计数incr,当这一秒的计数值已经超过了限速rate,就拿不到token了,也就是限制流量。

对每秒钟创建出的key,让他超时expire。保证key不会持续占用存储空间。

没有什么难点,这里使用redis事务,保证incr和expire能同时执行成功。

class RedisTokenCache(Cache):

  def __init__(self, host, port, db=0, password=None, max_connections=None):
    Cache.__init__(self)
    self.redis = redis.Redis(
      connection_pool=
        redis.ConnectionPool(
          host=host, port=port, db=db,
          password=password,
          max_connections=max_connections
        ))

  def fetchToken(self, rate=100, count=1, expire=3, key=None):
    date = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    key = ":".join([self.namespace, key if key else self.key, date])
    try:
      current = self.redis.get(key)
      if int(current if current else "0") > rate:
        raise Exception("to many requests in current second: %s" % date)
      else:
        with self.redis.pipeline() as p:
          p.multi()
          p.incr(key, count)
          p.expire(key, int(expire if expire else "3"))
          p.execute()
          return True
    except Exception, ex:
      return False

多线程场景下测试代码 

limiter = ThreadingRateLimiter(rate=10000)

def job():
  while 1:
    if not limiter.acquire():
      print '限流'
    else:
      print '正常'

threads = [threading.Thread(target=job) for i in range(10)]
for thread in threads:
  thread.start()

分布式场景下测试代码

token_cache = RedisTokenCache(host='10.93.84.53', port=6379, password='bigdata123')
limiter = DistributeRateLimiter(rate=10000, cache=token_cache)
r = redis.Redis(connection_pool=redis.ConnectionPool(host='10.93.84.53', port=6379, password='bigdata123'))

def job():
  while 1:
    if not limiter.acquire():
      print '限流'
    else:
      print '正常'

threads = [multiprocessing.Process(target=job) for i in range(10)]
for thread in threads:
  thread.start()

可以自行跑一下。 

说明:

我这里的限速都是秒级别的,例如限制每秒400次请求。有可能出现这一秒的前100ms,就来了400次请求,后900ms就全部限制住了。也就是不能平滑限流。

不过如果你后台的逻辑有队列,或者线程池这样的缓冲,这个不平滑的影响其实不大。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
用Python计算三角函数之acos()方法的使用
May 15 Python
Python NumPy库安装使用笔记
May 18 Python
python任务调度实例分析
May 19 Python
Python数据类型详解(三)元祖:tuple
May 08 Python
Python生成随机数组的方法小结
Apr 15 Python
如何安装多版本python python2和python3共存以及pip共存
Sep 18 Python
对Python w和w+权限的区别详解
Jan 23 Python
python中pytest收集用例规则与运行指定用例详解
Jun 27 Python
pymysql模块的操作实例
Dec 17 Python
python安装cx_Oracle和wxPython的方法
Sep 14 Python
python Tornado框架的使用示例
Oct 19 Python
详解Anaconda安装tensorflow报错问题解决方法
Nov 01 Python
Python Nose框架编写测试用例方法
Oct 26 #Python
Python面向对象编程基础解析(二)
Oct 26 #Python
Python面向对象编程基础解析(一)
Oct 26 #Python
获取Django项目的全部url方法详解
Oct 26 #Python
Python探索之ModelForm代码详解
Oct 26 #Python
启动targetcli时遇到错误解决办法
Oct 26 #Python
Mac中Python 3环境下安装scrapy的方法教程
Oct 26 #Python
You might like
终于听上了直流胆调频
2021/03/02 无线电
PHP 强制性文件下载功能的函数代码(任意文件格式)
2010/05/26 PHP
php数组转换js数组操作及json_encode的用法详解
2013/10/26 PHP
ThinkPHP模板比较标签用法详解
2014/06/30 PHP
PHP连接操作access数据库实例
2015/03/30 PHP
PHP获取文件行数的方法
2015/06/10 PHP
PHP单态模式简单用法示例
2016/11/16 PHP
PHP生成二维码与识别二维码的方法详解【附源码下载】
2019/03/07 PHP
PHP中abstract(抽象)、final(最终)和static(静态)原理与用法详解
2020/06/05 PHP
PHP页面静态化――纯静态与伪静态用法详解
2020/06/05 PHP
js实现点击图片改变页面背景图的方法
2015/02/28 Javascript
node.js实现端口转发
2016/04/14 Javascript
JavaScript实现图片懒加载(Lazyload)
2016/11/28 Javascript
js实现淡入淡出轮播切换功能
2017/01/13 Javascript
利用jQuery实现简单的拖曳效果实例代码
2017/10/20 jQuery
使用vue自定义指令开发表单验证插件validate.js
2019/05/23 Javascript
jquery实现直播弹幕效果
2019/11/28 jQuery
python基础教程之获取本机ip数据包示例
2014/02/10 Python
Python的字典和列表的使用中一些需要注意的地方
2015/04/24 Python
Python中编写ORM框架的入门指引
2015/04/29 Python
Python解析命令行读取参数--argparse模块使用方法
2018/01/23 Python
浅谈Pycharm调用同级目录下的py脚本bug
2018/12/03 Python
Python实现括号匹配方法详解
2020/02/10 Python
美国女鞋品牌:naturalizer(娜然)
2016/08/01 全球购物
GoPro摄像机美国官网:美国运动相机厂商
2018/07/03 全球购物
荷兰领先的百货商店:De Bijenkorf
2018/10/17 全球购物
荷兰天然和有机产品网上商城:BigGreenSmile.nl
2020/07/26 全球购物
意大利单身交友网站:Meetic
2020/07/12 全球购物
出国留学经济担保书
2014/04/01 职场文书
2014年行政助理工作总结
2014/11/19 职场文书
敬老院义诊活动总结
2015/05/07 职场文书
社区党务工作总结2015
2015/05/19 职场文书
新手入门Mysql--sql执行过程
2021/06/20 MySQL
详解非极大值抑制算法之Python实现
2021/06/28 Python
WINDOWS 64位 下安装配置mysql8.0.25最详细的教程
2022/03/22 MySQL
在ubuntu下安装go开发环境的全过程
2022/08/05 Golang