Python yield与实现方法代码分析


Posted in Python onFebruary 06, 2018

yield的功能类似于return,但是不同之处在于它返回的是生成器。

生成器

生成器是通过一个或多个yield表达式构成的函数,每一个生成器都是一个迭代器(但是迭代器不一定是生成器)。

如果一个函数包含yield关键字,这个函数就会变为一个生成器。

生成器并不会一次返回所有结果,而是每次遇到yield关键字后返回相应结果,并保留函数当前的运行状态,等待下一次的调用。

由于生成器也是一个迭代器,那么它就应该支持next方法来获取下一个值。

基本操作

# 通过`yield`来创建生成器
def func():
 for i in xrange(10);
  yield i
# 通过列表来创建生成器
[i for i in xrange(10)]
# 通过`yield`来创建生成器
def func():
 for i in xrange(10);
  yield i
# 通过列表来创建生成器
[i for i in xrange(10)]
Python
# 调用如下
>>> f = func()
>>> f # 此时生成器还没有运行
<generator object func at 0x7fe01a853820>
>>> f.next() # 当i=0时,遇到yield关键字,直接返回
>>> f.next() # 继续上一次执行的位置,进入下一层循环
...
>>> f.next()
>>> f.next() # 当执行完最后一次循环后,结束yield语句,生成StopIteration异常
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>>
# 调用如下
>>> f = func()
>>> f # 此时生成器还没有运行
<generator object func at 0x7fe01a853820>
>>> f.next() # 当i=0时,遇到yield关键字,直接返回
>>> f.next() # 继续上一次执行的位置,进入下一层循环
...
>>> f.next()
>>> f.next() # 当执行完最后一次循环后,结束yield语句,生成StopIteration异常
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>>

除了next函数,生成器还支持send函数。该函数可以向生成器传递参数。

>>> def func():
...  n = 0
...  while 1:
...   n = yield n #可以通过send函数向n赋值
... 
>>> f = func()
>>> f.next() # 默认情况下n为0
>>> f.send(1) #n赋值1
>>> f.send(2)
>>> 
>>> def func():
...  n = 0
...  while 1:
...   n = yield n #可以通过send函数向n赋值
... 
>>> f = func()
>>> f.next() # 默认情况下n为0
>>> f.send(1) #n赋值1
>>> f.send(2)
>>>

应用

最经典的例子,生成无限序列。

常规的解决方法是,生成一个满足要求的很大的列表,这个列表需要保存在内存中,很明显内存限制了这个问题。

def get_primes(start):
 for element in magical_infinite_range(start):
  if is_prime(element):
   return element
def get_primes(start):
 for element in magical_infinite_range(start):
  if is_prime(element):
   return element

如果使用生成器就不需要返回整个列表,每次都只是返回一个数据,避免了内存的限制问题。

def get_primes(number):
 while True:
  if is_prime(number):
   yield number
  number += 1
def get_primes(number):
 while True:
  if is_prime(number):
   yield number
  number += 1

生成器源码分析

生成器的源码在Objects/genobject.c。

调用栈

在解释生成器之前,需要讲解一下Python虚拟机的调用原理。

Python虚拟机有一个栈帧的调用栈,其中栈帧的是PyFrameObject,位于Include/frameobject.h。

typedef struct _frame {
 PyObject_VAR_HEAD
 struct _frame *f_back; /* previous frame, or NULL */
 PyCodeObject *f_code; /* code segment */
 PyObject *f_builtins; /* builtin symbol table (PyDictObject) */
 PyObject *f_globals; /* global symbol table (PyDictObject) */
 PyObject *f_locals;  /* local symbol table (any mapping) */
 PyObject **f_valuestack; /* points after the last local */
 /* Next free slot in f_valuestack. Frame creation sets to f_valuestack.
  Frame evaluation usually NULLs it, but a frame that yields sets it
  to the current stack top. */
 PyObject **f_stacktop;
 PyObject *f_trace;  /* Trace function */

 /* If an exception is raised in this frame, the next three are used to
  * record the exception info (if any) originally in the thread state. See
  * comments before set_exc_info() -- it's not obvious.
  * Invariant: if _type is NULL, then so are _value and _traceback.
  * Desired invariant: all three are NULL, or all three are non-NULL. That
  * one isn't currently true, but "should be".
  */
 PyObject *f_exc_type, *f_exc_value, *f_exc_traceback;

 PyThreadState *f_tstate;
 int f_lasti;  /* Last instruction if called */
 /* Call PyFrame_GetLineNumber() instead of reading this field
  directly. As of 2.3 f_lineno is only valid when tracing is
  active (i.e. when f_trace is set). At other times we use
  PyCode_Addr2Line to calculate the line from the current
  bytecode index. */
 int f_lineno;  /* Current line number */
 int f_iblock;  /* index in f_blockstack */
 PyTryBlock f_blockstack[CO_MAXBLOCKS]; /* for try and loop blocks */
 PyObject *f_localsplus[1]; /* locals+stack, dynamically sized */
} PyFrameObject;
typedef struct _frame {
 PyObject_VAR_HEAD
 struct _frame *f_back; /* previous frame, or NULL */
 PyCodeObject *f_code; /* code segment */
 PyObject *f_builtins; /* builtin symbol table (PyDictObject) */
 PyObject *f_globals; /* global symbol table (PyDictObject) */
 PyObject *f_locals;  /* local symbol table (any mapping) */
 PyObject **f_valuestack; /* points after the last local */
 /* Next free slot in f_valuestack. Frame creation sets to f_valuestack.
  Frame evaluation usually NULLs it, but a frame that yields sets it
  to the current stack top. */
 PyObject **f_stacktop;
 PyObject *f_trace;  /* Trace function */
 /* If an exception is raised in this frame, the next three are used to
  * record the exception info (if any) originally in the thread state. See
  * comments before set_exc_info() -- it's not obvious.
  * Invariant: if _type is NULL, then so are _value and _traceback.
  * Desired invariant: all three are NULL, or all three are non-NULL. That
  * one isn't currently true, but "should be".
  */
 PyObject *f_exc_type, *f_exc_value, *f_exc_traceback;
 
 PyThreadState *f_tstate;
 int f_lasti;  /* Last instruction if called */
 /* Call PyFrame_GetLineNumber() instead of reading this field
  directly. As of 2.3 f_lineno is only valid when tracing is
  active (i.e. when f_trace is set). At other times we use
  PyCode_Addr2Line to calculate the line from the current
  bytecode index. */
 int f_lineno;  /* Current line number */
 int f_iblock;  /* index in f_blockstack */
 PyTryBlock f_blockstack[CO_MAXBLOCKS]; /* for try and loop blocks */
 PyObject *f_localsplus[1]; /* locals+stack, dynamically sized */
} PyFrameObject;

栈帧保存了给出代码的的信息和上下文,其中包含最后执行的指令,全局和局部命名空间,异常状态等信息。f_valueblock保存了数据,b_blockstack保存了异常和循环控制方法。

举一个例子来说明,

def foo():
 x = 1
 def bar(y):
  z = y + 2 # 
def foo():
 x = 1
 def bar(y):
  z = y + 2 #

那么,相应的调用栈如下,一个py文件,一个类,一个函数都是一个代码块,对应者一个Frame,保存着上下文环境以及字节码指令。

c ---------------------------
a | bar Frame     | -> block stack: []
l |  (newest)    | -> data stack: [1, 2]
l ---------------------------
 | foo Frame     | -> block stack: []
s |       | -> data stack: [.bar at 0x10d389680>, 1]
t ---------------------------
a | main (module) Frame  | -> block stack: []
c |  (oldest)   | -> data stack: []
k ---------------------------

c ---------------------------
a | bar Frame     | -> block stack: []
l |  (newest)    | -> data stack: [1, 2]
l ---------------------------
 | foo Frame     | -> block stack: []
s |       | -> data stack: [.bar at 0x10d389680>, 1]
t ---------------------------
a | main (module) Frame  | -> block stack: []
c |  (oldest)   | -> data stack: []
k ---------------------------

每一个栈帧都拥有自己的数据栈和block栈,独立的数据栈和block栈使得解释器可以中断和恢复栈帧(生成器正式利用这点)。

Python代码首先被编译为字节码,再由Python虚拟机来执行。一般来说,一条Python语句对应着多条字节码(由于每条字节码对应着一条C语句,而不是一个机器指令,所以不能按照字节码的数量来判断代码性能)。

调用dis模块可以分析字节码,

from dis import dis
dis(foo)
    0 LOAD_CONST    1 (1) # 加载常量1
    3 STORE_FAST    0 (x) # x赋值为1
   6 LOAD_CONST    2 (<code>) # 加载常量2
    9 MAKE_FUNCTION   0 # 创建函数
    12 STORE_FAST    1 (bar) 
   15 LOAD_FAST    1 (bar) 
    18 LOAD_FAST    0 (x)
    21 CALL_FUNCTION   1 # 调用函数
    24 RETURN_VALUE  </code>

from dis import dis
 dis(foo)
    0 LOAD_CONST    1 (1) # 加载常量1
    3 STORE_FAST    0 (x) # x赋值为1
   6 LOAD_CONST    2 (<code>) # 加载常量2
    9 MAKE_FUNCTION   0 # 创建函数
    12 STORE_FAST    1 (bar) 
   15 LOAD_FAST    1 (bar) 
    18 LOAD_FAST    0 (x)
    21 CALL_FUNCTION   1 # 调用函数
    24 RETURN_VALUE  </code>

其中,

第一行为代码行号;
第二行为偏移地址;
第三行为字节码指令;
第四行为指令参数;
第五行为参数解释。

第一行为代码行号;
第二行为偏移地址;
第三行为字节码指令;
第四行为指令参数;
第五行为参数解释。

生成器源码分析

由了上面对于调用栈的理解,就可以很容易的明白生成器的具体实现。

生成器的源码位于object/genobject.c。

生成器的创建

PyObject *
PyGen_New(PyFrameObject *f)
{
 PyGenObject *gen = PyObject_GC_New(PyGenObject, &PyGen_Type); # 创建生成器对象
 if (gen == NULL) {
  Py_DECREF(f);
  return NULL;
 }
 gen->gi_frame = f; # 赋予代码块
 Py_INCREF(f->f_code); # 引用计数+1
 gen->gi_code = (PyObject *)(f->f_code);
 gen->gi_running = 0; # 0表示为执行,也就是生成器的初始状态
 gen->gi_weakreflist = NULL;
 _PyObject_GC_TRACK(gen); # GC跟踪
 return (PyObject *)gen;
}

PyObject *
PyGen_New(PyFrameObject *f)
{
 PyGenObject *gen = PyObject_GC_New(PyGenObject, &PyGen_Type); # 创建生成器对象
 if (gen == NULL) {
  Py_DECREF(f);
  return NULL;
 }
 gen->gi_frame = f; # 赋予代码块
 Py_INCREF(f->f_code); # 引用计数+1
 gen->gi_code = (PyObject *)(f->f_code);
 gen->gi_running = 0; # 0表示为执行,也就是生成器的初始状态
 gen->gi_weakreflist = NULL;
 _PyObject_GC_TRACK(gen); # GC跟踪
 return (PyObject *)gen;
}

send与next

next与send函数,如下

static PyObject *
gen_iternext(PyGenObject *gen)
{
 return gen_send_ex(gen, NULL, 0);
}
static PyObject *
gen_send(PyGenObject *gen, PyObject *arg)
{
 return gen_send_ex(gen, arg, 0);
}

static PyObject *
gen_iternext(PyGenObject *gen)
{
 return gen_send_ex(gen, NULL, 0);
}
static PyObject *
gen_send(PyGenObject *gen, PyObject *arg)
{
 return gen_send_ex(gen, arg, 0);
}

从上面的代码中可以看到,send和next都是调用的同一函数gen_send_ex,区别在于是否带有参数。

static PyObject *
gen_send_ex(PyGenObject *gen, PyObject *arg, int exc)
{
 PyThreadState *tstate = PyThreadState_GET();
 PyFrameObject *f = gen->gi_frame;
 PyObject *result;
 if (gen->gi_running) { # 判断生成器是否已经运行
  PyErr_SetString(PyExc_ValueError,
      "generator already executing");
  return NULL;
 }
 if (f==NULL || f->f_stacktop == NULL) { # 如果代码块为空或调用栈为空,则抛出StopIteration异常
  /* Only set exception if called from send() */
  if (arg && !exc)
   PyErr_SetNone(PyExc_StopIteration);
  return NULL;
 }
 if (f->f_lasti == -1) { # f_lasti=1 代表首次执行
  if (arg && arg != Py_None) { # 首次执行不允许带有参数
   PyErr_SetString(PyExc_TypeError,
       "can't send non-None value to a "
       "just-started generator");
   return NULL;
  }
 } else {
  /* Push arg onto the frame's value stack */
  result = arg ? arg : Py_None;
  Py_INCREF(result); # 该参数引用计数+1
  *(f->f_stacktop++) = result; # 参数压栈
 }
 /* Generators always return to their most recent caller, not
  * necessarily their creator. */
 f->f_tstate = tstate;
 Py_XINCREF(tstate->frame);
 assert(f->f_back == NULL);
 f->f_back = tstate->frame;
 gen->gi_running = 1; # 修改生成器执行状态
 result = PyEval_EvalFrameEx(f, exc); # 执行字节码
 gen->gi_running = 0; # 恢复为未执行状态
 /* Don't keep the reference to f_back any longer than necessary. It
  * may keep a chain of frames alive or it could create a reference
  * cycle. */
 assert(f->f_back == tstate->frame);
 Py_CLEAR(f->f_back);
 /* Clear the borrowed reference to the thread state */
 f->f_tstate = NULL;
 /* If the generator just returned (as opposed to yielding), signal
  * that the generator is exhausted. */
 if (result == Py_None && f->f_stacktop == NULL) {
  Py_DECREF(result);
  result = NULL;
  /* Set exception if not called by gen_iternext() */
  if (arg)
   PyErr_SetNone(PyExc_StopIteration);
 }
 if (!result || f->f_stacktop == NULL) {
  /* generator can't be rerun, so release the frame */
  Py_DECREF(f);
  gen->gi_frame = NULL;
 }
 return result;
}

static PyObject *
gen_send_ex(PyGenObject *gen, PyObject *arg, int exc)
{
 PyThreadState *tstate = PyThreadState_GET();
 PyFrameObject *f = gen->gi_frame;
 PyObject *result;
 if (gen->gi_running) { # 判断生成器是否已经运行
  PyErr_SetString(PyExc_ValueError,
      "generator already executing");
  return NULL;
 }
 if (f==NULL || f->f_stacktop == NULL) { # 如果代码块为空或调用栈为空,则抛出StopIteration异常
  /* Only set exception if called from send() */
  if (arg && !exc)
   PyErr_SetNone(PyExc_StopIteration);
  return NULL;
 }
 if (f->f_lasti == -1) { # f_lasti=1 代表首次执行
  if (arg && arg != Py_None) { # 首次执行不允许带有参数
   PyErr_SetString(PyExc_TypeError,
       "can't send non-None value to a "
       "just-started generator");
   return NULL;
  }
 } else {
  /* Push arg onto the frame's value stack */
  result = arg ? arg : Py_None;
  Py_INCREF(result); # 该参数引用计数+1
  *(f->f_stacktop++) = result; # 参数压栈
 }
 /* Generators always return to their most recent caller, not
  * necessarily their creator. */
 f->f_tstate = tstate;
 Py_XINCREF(tstate->frame);
 assert(f->f_back == NULL);
 f->f_back = tstate->frame;
 gen->gi_running = 1; # 修改生成器执行状态
 result = PyEval_EvalFrameEx(f, exc); # 执行字节码
 gen->gi_running = 0; # 恢复为未执行状态
 /* Don't keep the reference to f_back any longer than necessary. It
  * may keep a chain of frames alive or it could create a reference
  * cycle. */
 assert(f->f_back == tstate->frame);
 Py_CLEAR(f->f_back);
 /* Clear the borrowed reference to the thread state */
 f->f_tstate = NULL;
 /* If the generator just returned (as opposed to yielding), signal
  * that the generator is exhausted. */
 if (result == Py_None && f->f_stacktop == NULL) {
  Py_DECREF(result);
  result = NULL;
  /* Set exception if not called by gen_iternext() */
  if (arg)
   PyErr_SetNone(PyExc_StopIteration);
 }
 if (!result || f->f_stacktop == NULL) {
  /* generator can't be rerun, so release the frame */
  Py_DECREF(f);
  gen->gi_frame = NULL;
 }
 return result;
}

字节码的执行

PyEval_EvalFrameEx函数的功能为执行字节码并返回结果。

# 主要流程如下,
for (;;) {
 switch(opcode) { # opcode为操作码,对应着各种操作
  case NOP:
   goto fast_next_opcode;
  ...
  ...
  case YIELD_VALUE: # 如果操作码是yield
   retval = POP(); 
   f->f_stacktop = stack_pointer;
   why = WHY_YIELD;
   goto fast_yield; # 利用goto跳出循环
 }
}
fast_yield:
 ... 
return vetval; # 返回结果
# 主要流程如下,
for (;;) {
 switch(opcode) { # opcode为操作码,对应着各种操作
  case NOP:
   goto fast_next_opcode;
  ...
  ...
  case YIELD_VALUE: # 如果操作码是yield
   retval = POP(); 
   f->f_stacktop = stack_pointer;
   why = WHY_YIELD;
   goto fast_yield; # 利用goto跳出循环
 }
}
fast_yield:
 ... 
return vetval; # 返回结果

举一个例子,f_back上一个Frame,f_lasti上一次执行的指令的偏移量,

import sys
from dis import dis
def func():
 f = sys._getframe(0)
 print f.f_lasti
 print f.f_back
 yield 1
 print f.f_lasti
 print f.f_back
 yield 2
a = func()
dis(func)
a.next()
a.next()
import sys
from dis import dis
def func():
 f = sys._getframe(0)
 print f.f_lasti
 print f.f_back
 yield 1
 print f.f_lasti
 print f.f_back
 yield 2
a = func()
dis(func)
a.next()
a.next()

结果如下,其中第三行的英文为操作码,对应着上面的opcode,每次switch都是在不同的opcode之间进行选择。

Python
   0 LOAD_GLOBAL    0 (sys)
    3 LOAD_ATTR    1 (_getframe)
    6 LOAD_CONST    1 (0)
    9 CALL_FUNCTION   1
    12 STORE_FAST    0 (f)
   15 LOAD_FAST    0 (f)
    18 LOAD_ATTR    2 (f_lasti) 
    21 PRINT_ITEM   
    22 PRINT_NEWLINE  
   23 LOAD_FAST    0 (f)
    26 LOAD_ATTR    3 (f_back)
    29 PRINT_ITEM   
    30 PRINT_NEWLINE  
  31 LOAD_CONST    2 (1)
    34 YIELD_VALUE  # 此时操作码为YIELD_VALUE,直接跳转上述goto语句,此时f_lasti为当前指令,f_back为当前frame
    35 POP_TOP    
  36 LOAD_FAST    0 (f)
    39 LOAD_ATTR    2 (f_lasti)
    42 PRINT_ITEM   
    43 PRINT_NEWLINE  
   44 LOAD_FAST    0 (f)
    47 LOAD_ATTR    3 (f_back)
    50 PRINT_ITEM   
    51 PRINT_NEWLINE  
   52 LOAD_CONST    3 (2)
    55 YIELD_VALUE   
    56 POP_TOP    
    57 LOAD_CONST    0 (None)
    60 RETURN_VALUE  
<frame object at 0x7fa75fcebc20> #和下面的frame相同,属于同一个frame,也就是说在同一个函数(命名空间)内,frame是同一个。
<frame object at 0x7fa75fcebc20>
   0 LOAD_GLOBAL    0 (sys)
    3 LOAD_ATTR    1 (_getframe)
    6 LOAD_CONST    1 (0)
    9 CALL_FUNCTION   1
    12 STORE_FAST    0 (f)
   15 LOAD_FAST    0 (f)
    18 LOAD_ATTR    2 (f_lasti) 
    21 PRINT_ITEM   
    22 PRINT_NEWLINE  
   23 LOAD_FAST    0 (f)
    26 LOAD_ATTR    3 (f_back)
    29 PRINT_ITEM   
    30 PRINT_NEWLINE  
   31 LOAD_CONST    2 (1)
    34 YIELD_VALUE  # 此时操作码为YIELD_VALUE,直接跳转上述goto语句,此时f_lasti为当前指令,f_back为当前frame
    35 POP_TOP    
   36 LOAD_FAST    0 (f)
    39 LOAD_ATTR    2 (f_lasti)
    42 PRINT_ITEM   
    43 PRINT_NEWLINE  
   44 LOAD_FAST    0 (f)
    47 LOAD_ATTR    3 (f_back)
    50 PRINT_ITEM   
    51 PRINT_NEWLINE  
   52 LOAD_CONST    3 (2)
    55 YIELD_VALUE   
    56 POP_TOP    
    57 LOAD_CONST    0 (None)
    60 RETURN_VALUE  
<frame object at 0x7fa75fcebc20> #和下面的frame相同,属于同一个frame,也就是说在同一个函数(命名空间)内,frame是同一个。
<frame object at 0x7fa75fcebc20>

总结

以上所述是小编给大家介绍的Python yield与实现方法代码分析,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!

Python 相关文章推荐
Python Web框架Flask下网站开发入门实例
Feb 08 Python
在Django中限制已登录用户的访问的方法
Jul 23 Python
python 遍历字符串(含汉字)实例详解
Apr 04 Python
《Python学习手册》学习总结
Jan 17 Python
Python Grid使用和布局详解
Jun 30 Python
Python Numpy数组扩展repeat和tile使用实例解析
Dec 09 Python
Python 实现判断图片格式并转换,将转换的图像存到生成的文件夹中
Jan 13 Python
python实现图像外边界跟踪操作
Jul 13 Python
基于python实现图片转字符画代码实例
Sep 04 Python
Numpy(Pandas)删除全为零的列的方法
Sep 11 Python
详解BeautifulSoup获取特定标签下内容的方法
Dec 07 Python
python人工智能human learn绘图可创建机器学习模型
Nov 23 Python
Django中间件工作流程及写法实例代码
Feb 06 #Python
Django数据库表反向生成实例解析
Feb 06 #Python
Python使用functools实现注解同步方法
Feb 06 #Python
django中send_mail功能实现详解
Feb 06 #Python
Python打印“菱形”星号代码方法
Feb 05 #Python
Django权限机制实现代码详解
Feb 05 #Python
Django中的Signal代码详解
Feb 05 #Python
You might like
php中mt_rand()随机数函数用法
2014/11/24 PHP
php通过淘宝API查询IP地址归属等信息
2015/12/25 PHP
WordPress过滤垃圾评论的几种主要方法小结
2016/07/11 PHP
PHP基于GD库实现的生成图片缩略图函数示例
2017/07/05 PHP
thinkphp5 migrate数据库迁移工具
2018/02/20 PHP
jquery zTree异步加载简单实例分享
2013/02/05 Javascript
jQuery判断当前点击的是第几个li的代码
2014/09/26 Javascript
百度地图自定义控件分享
2015/03/04 Javascript
jQuery简单实现验证邮箱格式
2015/07/15 Javascript
javascript比较两个日期相差天数的方法
2015/07/24 Javascript
JS鼠标拖拽实例分析
2015/11/23 Javascript
BootStrap tab选项卡使用小结
2020/08/09 Javascript
AngularJS出现$http异步后台无法获取请求参数问题的解决方法
2016/11/03 Javascript
bootstrap导航、选项卡实现代码
2016/12/28 Javascript
浅谈js停止事件冒泡 阻止浏览器的默认行为(阻止超连接 #)
2017/02/08 Javascript
JS简单实现父子窗口传值功能示例【未使用iframe框架】
2017/09/20 Javascript
vue-router路由与页面间导航实例解析
2017/11/07 Javascript
jQuery实现动态添加节点与遍历节点功能示例
2017/11/09 jQuery
Vue实现动态创建和删除数据的方法
2018/03/17 Javascript
如何使用Node.js爬取任意网页资源并输出PDF文件到本地
2019/06/17 Javascript
[58:12]Ti4第二日主赛事败者组 LGD vs iG 3
2014/07/21 DOTA
Python FTP两个文件夹间的同步实例代码
2018/05/25 Python
Python机器学习k-近邻算法(K Nearest Neighbor)实例详解
2018/06/25 Python
如何用Python合并lmdb文件
2018/07/02 Python
python 3.6.2 安装配置方法图文教程
2018/09/18 Python
利用Python实现Excel的文件间的数据匹配功能
2020/06/16 Python
python 利用matplotlib在3D空间绘制二次抛物面的案例
2021/02/06 Python
Matlab使用Plot函数实现数据动态显示方法总结
2021/02/25 Python
Forever 21美国官网:美国标志性快时尚品牌
2017/02/20 全球购物
J2EE的优越性主要表现在哪些方面
2016/03/28 面试题
护理专业自荐书
2014/06/04 职场文书
好的旅游活动方案
2014/08/19 职场文书
2014年群众路线教育实践活动整改措施
2014/09/24 职场文书
2016年元旦主持词
2015/07/06 职场文书
使用pandas模块实现数据的标准化操作
2021/05/14 Python
Win7/8.1用户可以免费升级到Windows 11系统吗?
2021/11/21 数码科技