Python中支持向量机SVM的使用方法详解


Posted in Python onDecember 26, 2017

除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm。

一、导入sklearn算法包

Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明

skleran中集成了许多算法,其导入包的方式如下所示,

逻辑回归:from sklearn.linear_model import LogisticRegression

       朴素贝叶斯:from sklearn.naive_bayes import GaussianNB

 

K-近邻:from sklearn.neighbors import KNeighborsClassifier

 

决策树:from sklearn.tree import DecisionTreeClassifier

 

支持向量机:from sklearn import svm

 二、sklearn中svc的使用

(1)使用numpy中的loadtxt读入数据文件

loadtxt()的使用方法:

Python中支持向量机SVM的使用方法详解

fname:文件路径。eg:C:/Dataset/iris.txt。

dtype:数据类型。eg:float、str等。

delimiter:分隔符。eg:‘,'。

converters:将数据列与转换函数进行映射的字典。eg:{1:fun},含义是将第2列对应转换函数进行转换。

usecols:选取数据的列。

以Iris兰花数据集为例子:

由于从UCI数据库中下载的Iris原始数据集的样子是这样的,前四列为特征列,第五列为类别列,分别有三种类别Iris-setosa, Iris-versicolor, Iris-virginica。

 

Python中支持向量机SVM的使用方法详解

当使用numpy中的loadtxt函数导入该数据集时,假设数据类型dtype为浮点型,但是很明显第五列的数据类型并不是浮点型。

因此我们要额外做一个工作,即通过loadtxt()函数中的converters参数将第五列通过转换函数映射成浮点类型的数据。

首先,我们要写出一个转换函数:

def iris_type(s):
 it = {'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2}
 return it[s]

接下来读入数据,converters={4: iris_type}中“4”指的是第5列:

path = u'D:/f盘/python/学习/iris.data' # 数据文件路径
data = np.loadtxt(path, dtype=float, delimiter=',', converters={4: iris_type})

读入结果:

Python中支持向量机SVM的使用方法详解

(2)将Iris分为训练集与测试集

x, y = np.split(data, (4,), axis=1)
x = x[:, :2]
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6)

1. split(数据,分割位置,轴=1(水平分割) or 0(垂直分割))。

2. x = x[:, :2]是为方便后期画图更直观,故只取了前两列特征值向量训练。

3. sklearn.model_selection.train_test_split随机划分训练集与测试集。train_test_split(train_data,train_target,test_size=数字, random_state=0)

参数解释:

train_data:所要划分的样本特征集

train_target:所要划分的样本结果

test_size:样本占比,如果是整数的话就是样本的数量

random_state:是随机数的种子。

随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。

(3)训练svm分类器

# clf = svm.SVC(C=0.1, kernel='linear', decision_function_shape='ovr')
 clf = svm.SVC(C=0.8, kernel='rbf', gamma=20, decision_function_shape='ovr')
 clf.fit(x_train, y_train.ravel())

 

kernel='linear'时,为线性核,C越大分类效果越好,但有可能会过拟合(defaul C=1)。

kernel='rbf'时(default),为高斯核,gamma值越小,分类界面越连续;gamma值越大,分类界面越“散”,分类效果越好,但有可能会过拟合。

decision_function_shape='ovr'时,为one v rest,即一个类别与其他类别进行划分,

decision_function_shape='ovo'时,为one v one,即将类别两两之间进行划分,用二分类的方法模拟多分类的结果。

(4)计算svc分类器的准确率

print clf.score(x_train, y_train) # 精度
y_hat = clf.predict(x_train)
show_accuracy(y_hat, y_train, '训练集')
print clf.score(x_test, y_test)
y_hat = clf.predict(x_test)
show_accuracy(y_hat, y_test, '测试集')

 结果为:

Python中支持向量机SVM的使用方法详解

如果想查看决策函数,可以通过decision_function()实现

print 'decision_function:\n', clf.decision_function(x_train)
print '\npredict:\n', clf.predict(x_train)

 结果为:

Python中支持向量机SVM的使用方法详解Python中支持向量机SVM的使用方法详解

decision_function中每一列的值代表距离各类别的距离。

(5)绘制图像

1.确定坐标轴范围,x,y轴分别表示两个特征

x1_min, x1_max = x[:, 0].min(), x[:, 0].max() # 第0列的范围
x2_min, x2_max = x[:, 1].min(), x[:, 1].max() # 第1列的范围
x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j] # 生成网格采样点
grid_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点
# print 'grid_test = \n', grid_testgrid_hat = clf.predict(grid_test) 

# 预测分类值grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同

这里用到了mgrid()函数,该函数的作用这里简单介绍一下:

假设假设目标函数F(x,y)=x+y。x轴范围1~3,y轴范围4~6,当绘制图像时主要分四步进行:

【step1:x扩展】(朝右扩展):

         [1 1 1]

[2 2 2]

[3 3 3]

【step2:y扩展】(朝下扩展):

[4 5 6]

[4 5 6]

[4 5 6]

【step3:定位(xi,yi)】:

[(1,4) (1,5) (1,6)]

[(2,4) (2,5) (2,6)]

[(3,4) (3,5) (3,6)]

【step4:将(xi,yi)代入F(x,y)=x+y】

因此这里x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]后的结果为:

Python中支持向量机SVM的使用方法详解

再通过stack()函数,axis=1,生成测试点

Python中支持向量机SVM的使用方法详解

2.指定默认字体

mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

3.绘制

cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)
plt.scatter(x[:, 0], x[:, 1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 样本
plt.scatter(x_test[:, 0], x_test[:, 1], s=120, facecolors='none', zorder=10) # 圈中测试集样本
plt.xlabel(u'花萼长度', fontsize=13)
plt.ylabel(u'花萼宽度', fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'鸢尾花SVM二特征分类', fontsize=15)
# plt.grid()
plt.show()

pcolormesh(x,y,z,cmap)这里参数代入x1,x2,grid_hat,cmap=cm_light绘制的是背景。

scatter中edgecolors是指描绘点的边缘色彩,s指描绘点的大小,cmap指点的颜色。

xlim指图的边界。

最终结果为:

Python中支持向量机SVM的使用方法详解

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python中django框架通过正则搜索页面上email地址的方法
Mar 21 Python
介绍Python中的文档测试模块
Apr 28 Python
python实现ping的方法
Jul 06 Python
django轻松使用富文本编辑器CKEditor的方法
Mar 30 Python
Python星号*与**用法分析
Feb 02 Python
Opencv+Python 色彩通道拆分及合并的示例
Dec 08 Python
Python发送邮件测试报告操作实例详解
Dec 08 Python
python 获得任意路径下的文件及其根目录的方法
Feb 16 Python
Python 抓取微信公众号账号信息的方法
Jun 14 Python
python实现按行分割文件
Jul 22 Python
python  logging日志打印过程解析
Oct 22 Python
Python预测2020高考分数和录取情况
Jul 08 Python
详解python中的 is 操作符
Dec 26 #Python
matplotlib简介,安装和简单实例代码
Dec 26 #Python
Python中xrange与yield的用法实例分析
Dec 26 #Python
Python简单计算数组元素平均值的方法示例
Dec 26 #Python
Python爬虫获取整个站点中的所有外部链接代码示例
Dec 26 #Python
Python之web模板应用
Dec 26 #Python
通过python+selenium3实现浏览器刷简书文章阅读量
Dec 26 #Python
You might like
PHP获取和操作配置文件php.ini的几个函数介绍
2013/06/24 PHP
php实现监听事件
2013/11/06 PHP
PHP实现将浏览历史页面网址保存到cookie的方法
2015/01/26 PHP
PHP中Array相关函数简介
2016/07/03 PHP
PHP批斗大会之缺失的异常详解
2019/07/09 PHP
ajaxControlToolkit AutoCompleteExtender的用法
2008/10/30 Javascript
jquery 事件执行检测代码
2009/12/09 Javascript
jQuery代码优化之基本事件
2011/11/01 Javascript
JavaScript中数组成员的添加、删除介绍
2014/12/30 Javascript
JavaScript的instanceof运算符学习教程
2016/06/08 Javascript
利用jQuery对无序列表排序的简单方法
2016/10/16 Javascript
vue实现添加标签demo示例代码
2017/01/21 Javascript
Mobile Web开发基础之四--处理手机设备的横竖屏问题
2017/08/11 Javascript
从对象列表中获取一个对象的方法,依据关键字和值
2017/09/20 Javascript
vue-cli常用设置总结
2018/02/24 Javascript
JavaScript数组去重算法实例小结
2018/05/07 Javascript
React-router4路由监听的实现
2018/08/07 Javascript
解决vuejs 使用value in list 循环遍历数组出现警告的问题
2018/09/26 Javascript
Element中的Cascader(级联列表)动态加载省\市\区数据的方法
2019/03/27 Javascript
详解Vscode中使用Eslint终极配置大全
2019/11/08 Javascript
d3.js 地铁轨道交通项目实战
2019/11/27 Javascript
浅谈numpy中linspace的用法 (等差数列创建函数)
2017/06/07 Python
对Python3 pyc 文件的使用详解
2019/02/16 Python
Pytorch卷积层手动初始化权值的实例
2019/08/17 Python
Pytorch Tensor基本数学运算详解
2019/12/30 Python
Python3.9.1中使用match方法详解
2021/02/08 Python
使用jTopo给Html5 Canva中绘制的元素添加鼠标事件
2014/05/15 HTML / CSS
英国网络托管和域名领导者:Web Hosting UK
2017/10/15 全球购物
荷兰皇家航空公司中国官网:KLM中国
2017/12/13 全球购物
菲律宾票务网站:StubHub菲律宾
2018/04/21 全球购物
伦敦剧院及景点门票:Encore Tickets
2018/07/01 全球购物
【魔兽争霸3重制版】原版画面与淬火MOD画面对比
2021/03/26 魔兽争霸
硕士生工作推荐信
2014/03/07 职场文书
2015年上半年党建工作总结
2015/03/30 职场文书
行政介绍信范文
2015/05/04 职场文书
聊聊golang中多个defer的执行顺序
2021/05/08 Golang