python实现低通滤波器代码


Posted in Python onFebruary 26, 2020

低通滤波器实验代码,这是参考别人网上的代码,所以自己也分享一下,共同进步

# -*- coding: utf-8 -*-

import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt


def butter_lowpass(cutoff, fs, order=5):
 nyq = 0.5 * fs
 normal_cutoff = cutoff / nyq
 b, a = butter(order, normal_cutoff, btype='low', analog=False)
 return b, a


def butter_lowpass_filter(data, cutoff, fs, order=5):
 b, a = butter_lowpass(cutoff, fs, order=order)
 y = lfilter(b, a, data)
 return y # Filter requirements.


order = 6
fs = 30.0 # sample rate, Hz
cutoff = 3.667 # desired cutoff frequency of the filter, Hz # Get the filter coefficients so we can check its frequency response.
b, a = butter_lowpass(cutoff, fs, order) # Plot the frequency response.
w, h = freqz(b, a, worN=800)
plt.subplot(2, 1, 1)
plt.plot(0.5*fs*w/np.pi, np.abs(h), 'b')
plt.plot(cutoff, 0.5*np.sqrt(2), 'ko')
plt.axvline(cutoff, color='k')
plt.xlim(0, 0.5*fs)
plt.title("Lowpass Filter Frequency Response")
plt.xlabel('Frequency [Hz]')
plt.grid() # Demonstrate the use of the filter. # First make some data to be filtered.
T = 5.0 # seconds
n = int(T * fs) # total number of samples
t = np.linspace(0, T, n, endpoint=False) # "Noisy" data. We want to recover the 1.2 Hz signal from this.
data = np.sin(1.2*2*np.pi*t) + 1.5*np.cos(9*2*np.pi*t) + 0.5*np.sin(12.0*2*np.pi*t) # Filter the data, and plot both the original and filtered signals.
y = butter_lowpass_filter(data, cutoff, fs, order)
plt.subplot(2, 1, 2)
plt.plot(t, data, 'b-', label='data')
plt.plot(t, y, 'g-', linewidth=2, label='filtered data')
plt.xlabel('Time [sec]')
plt.grid()
plt.legend()
plt.subplots_adjust(hspace=0.35)
plt.show()

实际代码,没有整理,可以读取txt文本文件,然后进行低通滤波,并将滤波前后的波形和FFT变换都显示出来

# -*- coding: utf-8 -*-

import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt
import os


def butter_lowpass(cutoff, fs, order=5):
 nyq = 0.5 * fs
 normal_cutoff = cutoff / nyq
 b, a = butter(order, normal_cutoff, btype='low', analog=False)
 return b, a


def butter_lowpass_filter(data, cutoff, fs, order=5):
 b, a = butter_lowpass(cutoff, fs, order=order)
 y = lfilter(b, a, data)
 return y # Filter requirements.


order = 5
fs = 100000.0 # sample rate, Hz
cutoff = 1000 # desired cutoff frequency of the filter, Hz # Get the filter coefficients so we can check its frequency response.
# b, a = butter_lowpass(cutoff, fs, order) # Plot the frequency response.
# w, h = freqz(b, a, worN=1000)
# plt.subplot(3, 1, 1)
# plt.plot(0.5*fs*w/np.pi, np.abs(h), 'b')
# plt.plot(cutoff, 0.5*np.sqrt(2), 'ko')
# plt.axvline(cutoff, color='k')
# plt.xlim(0, 1000)
# plt.title("Lowpass Filter Frequency Response")
# plt.xlabel('Frequency [Hz]')
# plt.grid() # Demonstrate the use of the filter. # First make some data to be filtered.
# T = 5.0 # seconds
# n = int(T * fs) # total number of samples
# t = np.linspace(0, T, n, endpoint=False) # "Noisy" data. We want to recover the 1.2 Hz signal from this.
# # data = np.sin(1.2*2*np.pi*t) + 1.5*np.cos(9*2*np.pi*t) + 0.5*np.sin(12.0*2*np.pi*t) # Filter the data, and plot both the original and filtered signals.


path = "*****"

for file in os.listdir(path):
 if file.endswith("txt"):
  data=[]
  filePath = os.path.join(path, file)
  with open(filePath, 'r') as f:
   lines = f.readlines()[8:]
   for line in lines:
    # print(line)
    data.append(float(line)*100)
  # print(len(data))
  t1=[i*10 for i in range(len(data))]
  plt.subplot(231)
  # plt.plot(range(len(data)), data)
  plt.plot(t1, data, linewidth=2,label='original data')
  # plt.title('ori wave', fontsize=10, color='#F08080')
  plt.xlabel('Time [us]')
  plt.legend()

  # filter_data = data[30000:35000]
  # filter_data=data[60000:80000]
  # filter_data2=data[60000:80000]
  # filter_data = data[80000:100000]
  # filter_data = data[100000:120000]
  filter_data = data[120000:140000]

  filter_data2=filter_data
  t2=[i*10 for i in range(len(filter_data))]
  plt.subplot(232)
  plt.plot(t2, filter_data, linewidth=2,label='cut off wave before filter')
  plt.xlabel('Time [us]')
  plt.legend()
  # plt.title('cut off wave', fontsize=10, color='#F08080')

  # filter_data=zip(range(1,len(data),int(fs/len(data))),data)
  # print(filter_data)
  n1 = len(filter_data)
  Yamp1 = abs(np.fft.fft(filter_data) / (n1 / 2))
  Yamp1 = Yamp1[range(len(Yamp1) // 2)]
  # x_axis=range(0,n//2,int(fs/len
  # 计算最大赋值点频率
  max1 = np.max(Yamp1)
  max1_index = np.where(Yamp1 == max1)
  if (len(max1_index[0]) == 2):
   print((max1_index[0][0] )* fs / n1, (max1_index[0][1]) * fs / n1)
  else:
   Y_second = Yamp1
   Y_second = np.sort(Y_second)
   print(np.where(Yamp1 == max1)[0] * fs / n1,
     (np.where(Yamp1 == Y_second[-2])[0]) * fs / n1)
  N1 = len(Yamp1)
  # print(N1)
  x_axis1 = [i * fs / n1 for i in range(N1)]

  plt.subplot(233)
  plt.plot(x_axis1[:300], Yamp1[:300], linewidth=2,label='FFT data')
  plt.xlabel('Frequence [Hz]')
  # plt.title('FFT', fontsize=10, color='#F08080')
  plt.legend()
  # plt.savefig(filePath.replace("txt", "png"))
  # plt.close()
  # plt.show()



  Y = butter_lowpass_filter(filter_data2, cutoff, fs, order)
  n3 = len(Y)
  t3 = [i * 10 for i in range(n3)]
  plt.subplot(235)
  plt.plot(t3, Y, linewidth=2, label='cut off wave after filter')
  plt.xlabel('Time [us]')
  plt.legend()
  Yamp2 = abs(np.fft.fft(Y) / (n3 / 2))
  Yamp2 = Yamp2[range(len(Yamp2) // 2)]
  # x_axis = range(0, n // 2, int(fs / len(Yamp)))
  max2 = np.max(Yamp2)
  max2_index = np.where(Yamp2 == max2)
  if (len(max2_index[0]) == 2):
   print(max2, max2_index[0][0] * fs / n3, max2_index[0][1] * fs / n3)
  else:
   Y_second2 = Yamp2
   Y_second2 = np.sort(Y_second2)
   print((np.where(Yamp2 == max2)[0]) * fs / n3,
     (np.where(Yamp2 == Y_second2[-2])[0]) * fs / n3)
  N2=len(Yamp2)
  # print(N2)
  x_axis2 = [i * fs / n3 for i in range(N2)]

  plt.subplot(236)
  plt.plot(x_axis2[:300], Yamp2[:300],linewidth=2, label='FFT data after filter')
  plt.xlabel('Frequence [Hz]')
  # plt.title('FFT after low_filter', fontsize=10, color='#F08080')
  plt.legend()
  # plt.show()
  plt.savefig(filePath.replace("txt", "png"))
  plt.close()
  print('*'*50)

  # plt.subplot(3, 1, 2)
  # plt.plot(range(len(data)), data, 'b-', linewidth=2,label='original data')
  # plt.grid()
  # plt.legend()
  #
  # plt.subplot(3, 1, 3)
  # plt.plot(range(len(y)), y, 'g-', linewidth=2, label='filtered data')
  # plt.xlabel('Time')
  # plt.grid()
  # plt.legend()
  # plt.subplots_adjust(hspace=0.35)
  # plt.show()
  '''
  # Y_fft = Y[60000:80000]
  Y_fft = Y
  # Y_fft = Y[80000:100000]
  # Y_fft = Y[100000:120000]
  # Y_fft = Y[120000:140000]
  n = len(Y_fft)
  Yamp = np.fft.fft(Y_fft)/(n/2)
  Yamp = Yamp[range(len(Yamp)//2)]

  max = np.max(Yamp)
  # print(max, np.where(Yamp == max))

  Y_second = Yamp
  Y_second=np.sort(Y_second)
  print(float(np.where(Yamp == max)[0])* fs / len(Yamp),float(np.where(Yamp==Y_second[-2])[0])* fs / len(Yamp))
  # print(float(np.where(Yamp == max)[0]) * fs / len(Yamp))
  '''

补充拓展:浅谈opencv的理想低通滤波器和巴特沃斯低通滤波器

低通滤波器

1.理想的低通滤波器

python实现低通滤波器代码

其中,D0表示通带的半径。D(u,v)的计算方式也就是两点间的距离,很简单就能得到。

python实现低通滤波器代码

使用低通滤波器所得到的结果如下所示。低通滤波器滤除了高频成分,所以使得图像模糊。由于理想低通滤波器的过度特性过于急峻,所以会产生了振铃现象。

python实现低通滤波器代码

2.巴特沃斯低通滤波器

python实现低通滤波器代码

同样的,D0表示通带的半径,n表示的是巴特沃斯滤波器的次数。随着次数的增加,振铃现象会越来越明显。

python实现低通滤波器代码

void ideal_Low_Pass_Filter(Mat src){
	Mat img;
	cvtColor(src, img, CV_BGR2GRAY);
	imshow("img",img);
	//调整图像加速傅里叶变换
	int M = getOptimalDFTSize(img.rows);
	int N = getOptimalDFTSize(img.cols);
	Mat padded;
	copyMakeBorder(img, padded, 0, M - img.rows, 0, N - img.cols, BORDER_CONSTANT, Scalar::all(0));
	//记录傅里叶变换的实部和虚部
	Mat planes[] = { Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F) };
	Mat complexImg;
	merge(planes, 2, complexImg);
	//进行傅里叶变换
	dft(complexImg, complexImg);
	//获取图像
	Mat mag = complexImg;
	mag = mag(Rect(0, 0, mag.cols & -2, mag.rows & -2));//这里为什么&上-2具体查看opencv文档
	//其实是为了把行和列变成偶数 -2的二进制是11111111.......10 最后一位是0
	//获取中心点坐标
	int cx = mag.cols / 2;
	int cy = mag.rows / 2;
	//调整频域
	Mat tmp;
	Mat q0(mag, Rect(0, 0, cx, cy));
	Mat q1(mag, Rect(cx, 0, cx, cy));
	Mat q2(mag, Rect(0, cy, cx, cy));
	Mat q3(mag, Rect(cx, cy, cx, cy));
 
	q0.copyTo(tmp);
	q3.copyTo(q0);
	tmp.copyTo(q3);
 
	q1.copyTo(tmp);
	q2.copyTo(q1);
	tmp.copyTo(q2);
	//Do为自己设定的阀值具体看公式
	double D0 = 60;
	//处理按公式保留中心部分
	for (int y = 0; y < mag.rows; y++){
		double* data = mag.ptr<double>(y);
		for (int x = 0; x < mag.cols; x++){
			double d = sqrt(pow((y - cy),2) + pow((x - cx),2));
			if (d <= D0){
				
			}
			else{
				data[x] = 0;
			}
		}
	}
	//再调整频域
	q0.copyTo(tmp);
	q3.copyTo(q0);
	tmp.copyTo(q3);
	q1.copyTo(tmp);
	q2.copyTo(q1);
	tmp.copyTo(q2);
	//逆变换
	Mat invDFT, invDFTcvt;
	idft(mag, invDFT, DFT_SCALE | DFT_REAL_OUTPUT); // Applying IDFT
	invDFT.convertTo(invDFTcvt, CV_8U);
	imshow("理想低通滤波器", invDFTcvt);
}
 
void Butterworth_Low_Paass_Filter(Mat src){
	int n = 1;//表示巴特沃斯滤波器的次数
	//H = 1 / (1+(D/D0)^2n)
	Mat img;
	cvtColor(src, img, CV_BGR2GRAY);
	imshow("img", img);
	//调整图像加速傅里叶变换
	int M = getOptimalDFTSize(img.rows);
	int N = getOptimalDFTSize(img.cols);
	Mat padded;
	copyMakeBorder(img, padded, 0, M - img.rows, 0, N - img.cols, BORDER_CONSTANT, Scalar::all(0));
 
	Mat planes[] = { Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F) };
	Mat complexImg;
	merge(planes, 2, complexImg);
 
	dft(complexImg, complexImg);
 
	Mat mag = complexImg;
	mag = mag(Rect(0, 0, mag.cols & -2, mag.rows & -2));
 
	int cx = mag.cols / 2;
	int cy = mag.rows / 2;
 
	Mat tmp;
	Mat q0(mag, Rect(0, 0, cx, cy));
	Mat q1(mag, Rect(cx, 0, cx, cy));
	Mat q2(mag, Rect(0, cy, cx, cy));
	Mat q3(mag, Rect(cx, cy, cx, cy));
 
	q0.copyTo(tmp);
	q3.copyTo(q0);
	tmp.copyTo(q3);
 
	q1.copyTo(tmp);
	q2.copyTo(q1);
	tmp.copyTo(q2);
 
	double D0 = 100;
 
	for (int y = 0; y < mag.rows; y++){
		double* data = mag.ptr<double>(y);
		for (int x = 0; x < mag.cols; x++){
			//cout << data[x] << endl;
			double d = sqrt(pow((y - cy), 2) + pow((x - cx), 2));
			//cout << d << endl;
			double h = 1.0 / (1 + pow(d / D0, 2 * n));
			if (h <= 0.5){
				data[x] = 0;
			}
			else{
				//data[x] = data[x]*0.5;
				//cout << h << endl;
			}
			
			//cout << data[x] << endl;
		}
	}
	q0.copyTo(tmp);
	q3.copyTo(q0);
	tmp.copyTo(q3);
	q1.copyTo(tmp);
	q2.copyTo(q1);
	tmp.copyTo(q2);
	//逆变换
	Mat invDFT, invDFTcvt;
	idft(complexImg, invDFT, DFT_SCALE | DFT_REAL_OUTPUT); // Applying IDFT
	invDFT.convertTo(invDFTcvt, CV_8U);
	imshow("巴特沃斯低通滤波器", invDFTcvt);
}

以上这篇python实现低通滤波器代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python创建系统目录的方法
Mar 11 Python
基础的十进制按位运算总结与在Python中的计算示例
Jun 28 Python
Python实现并行抓取整站40万条房价数据(可更换抓取城市)
Dec 14 Python
Python利用QQ邮箱发送邮件的实现方法(分享)
Jun 09 Python
Python3操作SQL Server数据库(实例讲解)
Oct 21 Python
Tensorflow加载预训练模型和保存模型的实例
Jul 27 Python
python实践项目之监控当前联网状态详情
May 23 Python
python 处理微信对账单数据的实例代码
Jul 19 Python
django基于restframework的CBV封装详解
Aug 08 Python
解决Jupyter Notebook开始菜单栏Anaconda下消失的问题
Apr 13 Python
python rolling regression. 使用 Python 实现滚动回归操作
Jun 08 Python
python使用matplotlib绘制图片时x轴的刻度处理
Aug 30 Python
Python解释器及PyCharm工具安装过程
Feb 26 #Python
Python基础之列表常见操作经典实例详解
Feb 26 #Python
Python TKinter如何自动关闭主窗口
Feb 26 #Python
Flask和pyecharts实现动态数据可视化
Feb 26 #Python
Python图像处理库PIL的ImageEnhance模块使用介绍
Feb 26 #Python
Python基础之字符串常见操作经典实例详解
Feb 26 #Python
浅析python表达式4+0.5值的数据类型
Feb 26 #Python
You might like
PHP执行zip与rar解压缩方法实现代码
2010/12/05 PHP
PHP小教程之实现链表
2014/06/09 PHP
php把大写命名转换成下划线分割命名
2015/04/27 PHP
php结合curl实现多线程抓取
2015/07/09 PHP
PHP使用第三方即时获取物流动态实例详解
2017/04/27 PHP
子窗口、父窗口和Silverlight之间的相互调用
2010/08/16 Javascript
google jQuery 引用文件,jQuery 引用地址集合(jquery 1.2.6至jquery1.5.2)
2011/04/24 Javascript
SeaJS入门教程系列之SeaJS介绍(一)
2014/03/03 Javascript
封装好的一个万能检测表单的方法
2015/01/21 Javascript
jQuery数据缓存用法分析
2015/02/20 Javascript
jQuery旋转木马式幻灯片轮播特效
2015/12/04 Javascript
jQuery实现选项卡切换效果简单演示
2015/12/09 Javascript
JavaScript实战之带收放动画效果的导航菜单
2016/08/16 Javascript
vue自定义指令实现v-tap插件
2016/11/03 Javascript
JavaScript实现弹窗效果代码分析
2017/03/09 Javascript
ExtJs异步无法向外传值和赋值的完美解决办法
2017/06/14 Javascript
BetterScroll 在移动端滚动场景的应用
2017/09/18 Javascript
js点击时关闭该范围下拉菜单之外的菜单方法
2018/01/11 Javascript
Vue中computed与methods的区别详解
2018/03/24 Javascript
js变量值传到php过程详解 将php解析成数据
2019/06/26 Javascript
Node.js API详解之 dns模块用法实例分析
2020/05/15 Javascript
解决await在forEach中不起作用的问题
2021/02/25 Javascript
[50:12]EG vs Fnatic 2018国际邀请赛小组赛BO2 第二场 8.19
2018/08/21 DOTA
Python使用gRPC传输协议教程
2018/10/16 Python
git查看、创建、删除、本地、远程分支方法详解
2020/02/18 Python
python字符串判断密码强弱
2020/03/18 Python
历史学专业个人的自我评价
2013/10/13 职场文书
创业计划书怎样才能打动风投
2014/01/01 职场文书
小学新学期教师寄语
2014/01/18 职场文书
金融事务专业毕业生求职信
2014/02/23 职场文书
教师专业自荐信
2014/05/31 职场文书
上课迟到检讨书300字
2014/10/15 职场文书
观后感的写法
2015/06/19 职场文书
如何用python清洗文件中的数据
2021/06/18 Python
html粘性页脚的具体使用
2022/01/18 HTML / CSS
科学家测试在太空中培育人造肉,用于未来太空旅行
2022/04/29 数码科技