pandas数据分组groupby()和统计函数agg()的使用


Posted in Python onMarch 04, 2021

数据分组

  • 使用 groupby() 方法进行分组
  • group.size()查看分组后每组的数量
  • group.groups 查看分组情况
  • group.get_group('名字') 根据分组后的名字选择分组数据

准备数据

# 一个Series其实就是一条数据,Series方法的第一个参数是data,第二个参数是index(索引),如果没有传值会使用默认值(0-N)
# index参数是我们自定义的索引值,注意:参数值的个数一定要相同。
# 在创建Series时数据并不一定要是列表,也可以将一个字典传进去。
from pandas import Series, DataFrame

# 使用字典创建
index_list = ['001', '002', '003', '004', '005', '006', '007', '008', '009', '010']
name_list = ['李白', '王昭君', '诸葛亮', '狄仁杰', '孙尚香', '妲己', '周瑜', '张飞', '王昭君', '大乔']
age_list = [25, 28, 27, 25, 30, 29, 25, 32, 28, 26]
gender_list = ['F', 'M', 'F', 'F', 'M', 'M', 'F', 'F', 'M', 'M']
salary_list = ['10k', '12.5k', '20k', '14k', '12k', '17k', '18k', '21k', '22k', '21.5k']
marital_list = ['NO', 'NO', 'YES', 'YES', 'NO', 'NO', 'NO', 'YES', 'NO', 'YES']
dic = {
 '姓名': Series(data=name_list, index=index_list),
 '年龄': Series(data=age_list, index=index_list),
 '薪资': Series(data=salary_list, index=index_list),
 '性别': Series(data=gender_list, index=index_list),
 '婚姻状况': Series(data=marital_list, index=index_list)
}
df = DataFrame(dic)

# 写入csv,path_or_buf为写入文本文件
df.to_csv(path_or_buf='./People.csv', encoding='utf_8_sig')
print('end')

上面代码会在当前目录下生成一个 People.csv 文件

import pandas as pd
df = pd.read_csv('./People.csv')
df.head()

pandas数据分组groupby()和统计函数agg()的使用

# 根据 '性别列' 进行分组, 得到的是一个分组后的对象
groups = df.groupby('性别')
print(groups)
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x000002953DAEBC88>

size()

使用groupby的size方法可以查看分组后每组的数量, 并返回一个含有分组大小的Series

print(groups.size())
性别
F 5
M 5
dtype: int64

可以只对一列数据进行分组, 只保留想要的数据

例如: 通过性别, 只对年龄进行分组

group = df['年龄'].groupby(df['性别'])
# 查看分组
print(group.groups)
# 根据分组后的名字选择分组
print(group.get_group('F'))
{'F': Int64Index([0, 2, 3, 6, 7], dtype='int64'), 'M': Int64Index([1, 4, 5, 8, 9], dtype='int64')}
0 25
2 27
3 25
6 25
7 32
Name: 年龄, dtype: int64
  • 代码df['年龄'].groupby(df['性别'])的逻辑是:取出df中'年龄'列数据,并且对该列数据根据df[‘性别']列数据进行分组操作
  • 这个代码也可写成df.groupby(df['性别'])['年龄'], 他的逻辑是: 将df数据通过df[‘性别']进行分组,然后再取出分组后的'年龄'列数据。两种写法达到的效果是一样的
  • group.groups的结果是一个字典,字典的key是分组后每个组的名字,对应的值是分组后的数据,此方法方便我们产看分组的情况
  • group.get_group('F')这个方法可以根据具体分组的名字获取,每个组的数据

 对分组进行遍历

import pandas as pd
df = pd.read_csv('./People.csv')
groups = df.groupby('性别')
# print(groups)
for group_name,group_df in groups:
 print('分组的名称:', group_name, '分组的数据', group_df.shape)
 print('-'*10)

分组的名称: F 分组的数据 (5, 6)
----------
分组的名称: M 分组的数据 (5, 6)
----------

- 将分组后的对象groups进行遍历,可以获取到group_name每个组的名字,group_df每个组的数据

import pandas as pd
df = pd.read_csv('./People.csv')
groups = df.groupby('性别')
for group_name,group_df in groups:
 f_mean = group_df['年龄'].mean()
 f_max = group_df['年龄'].max()
 f_min = group_df['年龄'].min()
 print('{}组的最大年龄是{},最小年龄是{},平均年龄是{}'.format(group_name,f_max,f_min,f_mean))

F组的最大年龄是32,最小年龄是25,平均年龄是26.8
M组的最大年龄是30,最小年龄是26,平均年龄是28.2

按多列进行分组

当需要按照多列进行分组的时候, groupby 方法里面我们传入一个列表, 列表分别存储分组依据的列名

注意: 列表中列名的顺序, 确定了先按XXXX列分组, 然后在按照YYYY列分组, 不同的顺序产生的分组名字是不同的

df = pd.read_csv('./People.csv')
group=df.groupby(['性别', '婚姻状况'])
df1 = group.size()
print(df1)
性别 婚姻状况
F  NO   2
  YES   3
M  NO   4
  YES   1
dtype: int64

group.size()返回的结果中发现索引值是多层的, 所以对于多索引值的获取, 只需要从外往里一层一层的取就可以啦, 就像我们睡觉之前,需要先脱外衣再脱掉内衣是一样的

size = df1['F'][ 'NO']
print(size)
2

pandas 常用统计函数

  • count() 统计列表中非空手机开的个数
  • nunique() 统计非重复的数据个数
  • sum() 统计列表中所有数值的和
  • mean() 计算列表中数据的平均值
  • median() 统计列表中数据中位数
  • max() 求列表中数据的最大值
  • min() 求列表中数据的最小值

对分组后的数据进行统计 agg()

import pandas as pd
df = pd.read_csv('./People.csv')
groups = df.groupby('性别')
for group_name,group_df in groups:
  f_se = group_df['年龄'].agg(['max','min','mean'])
  print('{}组的最大年龄是{},最小年龄是{},平均年龄是{}'.format(group_name,f_se[0],f_se[1],f_se[2]))

F组的最大年龄是32.0,最小年龄是25.0,平均年龄是26.8
M组的最大年龄是30.0,最小年龄是26.0,平均年龄是28.2

  • 在使用 agg() 函数时, 我们可以将多个统计函数一起放在一个 agg() 函数中
  • 如果是统计函数是pandas 提供的, 只需要将函数名字以字符串的形式存储到列表中即可
  • 例如: 将 max() 改成 ‘max'

自定义统计函数

当使用自定义的统计函数时
先创建统计函数

# 自定义的统计函数
def my_peak_range(df):
  """
  返回最大值与最小之间的范围
  """
  return df.max() - df.min()

# 使用
for group_name,group_df in groups:
  f_se = group_df['年龄'].agg(['max','min','mean',my_peak_range])
  print(f_se[0],f_se[1],f_se[3])
32.0 25.0 7.0
30.0 26.0 4.0

注意: 自定义函数名字传入agg() 函数时, 不需要转换成字符串

补充: 在这个数据中, 性别是什么的人总年龄最高

import pandas as pd
df = pd.read_csv('./People.csv')
groups = df.groupby('性别')
gende=groups.sum().sort_values(by='年龄',ascending=False).index.to_list()[0]
"""
这行代码, 先按性别进行分组, 然后吧每组中的数据求和得到总的年龄, 在按照年龄排序
再取出index,最后使用to_list()转换为列表,取出第一个数据
"""

print(gende)

M

开始按照性别分组, 组量太少, 数据也比较少, 本来准备算薪资总数, 但是单位忘记换了, 就这样吧

到此这篇关于pandas数据分组groupby()和统计函数agg()的使用的文章就介绍到这了,更多相关pandas groupby()和agg()内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python 3.x 连接数据库示例(pymysql 方式)
Jan 19 Python
浅谈使用Python内置函数getattr实现分发模式
Jan 22 Python
Python中的函数作用域
May 07 Python
使用Python开发SQLite代理服务器的方法
Dec 07 Python
django多种支付、并发订单处理实例代码
Dec 13 Python
深入浅析Python 函数注解与匿名函数
Feb 24 Python
Python Selenium安装及环境配置的实现
Mar 17 Python
python继承threading.Thread实现有返回值的子类实例
May 02 Python
Python基于httpx模块实现发送请求
Jul 07 Python
Python高并发解决方案实现过程详解
Jul 31 Python
python装饰器实现对异常代码出现进行自动监控的实现方法
Sep 15 Python
如何一键升级Python所有包
Nov 05 Python
pyx文件 生成pyd 文件用于 cython调用的实现
Mar 04 #Python
Python .py生成.pyd文件并打包.exe 的注意事项说明
Mar 04 #Python
python 中 .py文件 转 .pyd文件的操作
Mar 04 #Python
Python实现图片指定位置加图片水印(附Pyinstaller打包exe)
Mar 04 #Python
python 指定源路径来解决import问题的操作
Mar 04 #Python
python源文件的字符编码知识点详解
Mar 04 #Python
python3判断IP地址的方法
Mar 04 #Python
You might like
PHP读取xml方法介绍
2013/01/12 PHP
PHP循环函数使用介绍之PHP基础入门教程
2013/09/21 PHP
php对数组排序代码分享
2014/02/24 PHP
js 方法实现返回多个数据的代码
2009/04/30 Javascript
详解JavaScript逻辑Not运算符
2015/12/04 Javascript
jquery捕捉回车键及获取checkbox值与异步请求的方法
2015/12/24 Javascript
实例讲解避免javascript冲突的方法
2016/01/03 Javascript
javascript实现dom元素可拖动
2016/03/21 Javascript
基于jquery实现轮播焦点图插件
2016/03/31 Javascript
微信分享调用jssdk实例
2017/06/08 Javascript
VUE重点问题总结
2018/03/19 Javascript
JSON生成Form表单的方法示例
2018/11/21 Javascript
[03:59]DOTA2英雄梦之声_第07期_水晶室女
2014/06/23 DOTA
Python  连接字符串(join %)
2008/09/06 Python
python实现探测socket和web服务示例
2014/03/28 Python
Python的Django框架使用入门指引
2015/04/15 Python
python实现判断数组是否包含指定元素的方法
2015/07/15 Python
python抓取文件夹的所有文件
2018/02/27 Python
python 爬虫一键爬取 淘宝天猫宝贝页面主图颜色图和详情图的教程
2018/05/22 Python
用Python实现读写锁的示例代码
2018/11/05 Python
python NumPy ndarray二维数组 按照行列求平均实例
2019/11/26 Python
django多种支付、并发订单处理实例代码
2019/12/13 Python
带你彻底搞懂python操作mysql数据库(cursor游标讲解)
2020/01/06 Python
python调用摄像头的示例代码
2020/09/28 Python
Python 实现一个简单的web服务器
2021/01/03 Python
Opodo英国旅游网站:预订廉价航班、酒店和汽车租赁
2018/07/14 全球购物
.NET里面什么时候需要调用垃圾回收
2015/06/01 面试题
好邻里事迹材料
2014/01/16 职场文书
学生打架检讨书
2014/02/14 职场文书
发展部经理职责规定
2014/02/22 职场文书
法学专业毕业实习自我鉴定2014
2014/09/27 职场文书
班主任2015新年寄语
2014/12/08 职场文书
博士导师推荐信
2015/03/25 职场文书
2016年“我们的节日·端午节”活动总结
2016/04/01 职场文书
浙江省杭州市平均工资标准是多少?
2019/07/09 职场文书
tree shaking对打包体积优化及作用
2022/07/07 Java/Android