如何基于Python和Flask编写Prometheus监控


Posted in Python onNovember 25, 2020

介绍

Prometheus 的基本原理是通过 HTTP 周期性抓取被监控组件的状态。

任意组件只要提供对应的 HTTP 接口并且符合 Prometheus 定义的数据格式,就可以接入 Prometheus 监控。

Prometheus Server 负责定时在目标上抓取 metrics(指标)数据并保存到本地存储。它采用了一种 Pull(拉)的方式获取数据,不仅降低客户端的复杂度,客户端只需要采集数据,无需了解服务端情况,也让服务端可以更加方便地水平扩展。

如果监控数据达到告警阈值,Prometheus Server 会通过 HTTP 将告警发送到告警模块 alertmanger,通过告警的抑制后触发邮件或者 Webhook。Prometheus 支持 PromQL 提供多维度数据模型和灵活的查询,通过监控指标关联多个 tag 的方式,将监控数据进行任意维度的组合以及聚合。

在python中实现服务器端,对外提供接口。在Prometheus中配置请求网址,Prometheus会定期向该网址发起申请获取你想要返回的数据。

另外Prometheus提供4种类型Metrics:Counter, Gauge, Summary和Histogram。

准备

pip install flask
pip install prometheus_client

Counter

Counter可以增长,并且在程序重启的时候会被重设为0,常被用于访问量,任务个数,总处理时间,错误个数等只增不减的指标。

定义它需要2个参数,第一个是metrics的名字,第二个是metrics的描述信息:

c = Counter('c1', 'A counter')

counter只能增加,所以只有一个方法:

def inc(self, amount=1):
    '''Increment counter by the given amount.'''
    if amount < 0:
      raise ValueError('Counters can only be incremented by non-negative amounts.')
    self._value.inc(amount)

测试示例:

import prometheus_client
from prometheus_client import Counter
from prometheus_client.core import CollectorRegistry

from flask import Response, Flask

app = Flask(__name__)
requests_total = Counter('c1','A counter')

@app.route("/api/metrics/count/")
def requests_count():
 requests_total.inc(1)
 # requests_total.inc(2)
 return Response(prometheus_client.generate_latest(requests_total),mimetype="text/plain")


if __name__ == "__main__":
 app.run(host="127.0.0.1",port=8081)

访问http://127.0.0.1:8081/api/metrics/count/:

# HELP c1_total A counter
# TYPE c1_total counter
c1_total 1.0
# HELP c1_created A counter
# TYPE c1_created gauge
c1_created 1.6053265493727107e+09

HELP是c1的注释说明,创建Counter定义的。

TYPE是c1的类型说明。

c1_total为我们定义的指标输出:你会发现多了后缀_total,这是因为OpenMetrics与Prometheus文本格式之间的兼容性,OpenMetrics需要_total后缀。

gauge

gauge可增可减,可以任意设置。

比如可以设置当前的CPU温度,内存使用量,磁盘、网络流量等等。

定义和counter基本一样:

from prometheus_client import Gauge
g = Gauge('my_inprogress_requests', 'Description of gauge')
g.inc()   # Increment by 1
g.dec(10)  # Decrement by given value
g.set(4.2)  # Set to a given value

方法:

def inc(self, amount=1):
   '''Increment gauge by the given amount.'''
   self._value.inc(amount)

def dec(self, amount=1):
   '''Decrement gauge by the given amount.'''
   self._value.inc(-amount)

 def set(self, value):
   '''Set gauge to the given value.'''
   self._value.set(float(value))

测试示例:

import random
import prometheus_client
from prometheus_client import Gauge
from prometheus_client.core import CollectorRegistry
from flask import Response, Flask


app = Flask(__name__)
random_value = Gauge("g1", 'A gauge')
@app.route("/api/metrics/gauge/")
def r_value():
  random_value.set(random.randint(0, 10))
  return Response(prometheus_client.generate_latest(random_value),
          mimetype="text/plain")

if __name__ == "__main__":
 app.run(host="127.0.0.1",port=8081)

访问http://127.0.0.1:8081/api/metrics/gauge/

# HELP g1 A gauge
# TYPE g1 gauge
g1 5.0

LABELS的用法

使用labels来区分metric的特征,一个指标可以有其中一个label,也可以有多个label。

from prometheus_client import Counter
c = Counter('requests_total', 'HTTP requests total', ['method', 'clientip'])
c.labels('get', '127.0.0.1').inc()
c.labels('post', '192.168.0.1').inc(3)
c.labels(method="get", clientip="192.168.0.1").inc()
import random
import prometheus_client
from prometheus_client import Gauge
from flask import Response, Flask


app = Flask(__name__)
c = Gauge("c1", 'A counter',['method','clientip'])
@app.route("/api/metrics/counter/")
def r_value():
  c.labels(method='get',clientip='192.168.0.%d' % random.randint(1,10)).inc()
  return Response(prometheus_client.generate_latest(c),
          mimetype="text/plain")

if __name__ == "__main__":
 app.run(host="127.0.0.1",port=8081)

连续访问9次http://127.0.0.1:8081/api/metrics/counter/:

# HELP c1 A counter
# TYPE c1 gauge
c1{clientip="192.168.0.7",method="get"} 2.0
c1{clientip="192.168.0.1",method="get"} 1.0
c1{clientip="192.168.0.8",method="get"} 1.0
c1{clientip="192.168.0.5",method="get"} 2.0
c1{clientip="192.168.0.4",method="get"} 1.0
c1{clientip="192.168.0.10",method="get"} 1.0
c1{clientip="192.168.0.2",method="get"} 1.0

histogram

这种主要用来统计百分位的,什么是百分位?英文叫做quantiles。

比如你有100条访问请求的耗时时间,把它们从小到大排序,第90个时间是200ms,那么我们可以说90%的请求都小于200ms,这也叫做”90分位是200ms”,能够反映出服务的基本质量。当然,也许第91个时间是2000ms,这就没法说了。

实际情况是,我们每天访问量至少几个亿,不可能把所有访问数据都存起来,然后排序找到90分位的时间是多少。因此,类似这种问题都采用了一些估算的算法来处理,不需要把所有数据都存下来,这里面数学原理比较高端,我们就直接看看prometheus的用法好了。

首先定义histogram:

h = Histogram('hh', 'A histogram', buckets=(-5, 0, 5))

第一个是metrics的名字,第二个是描述,第三个是分桶设置,重点说一下buckets。

这里(-5,0,5)实际划分成了几种桶:(无穷小,-5],(-5,0],(0,5],(5,无穷大)。

如果我们喂给它一个-8:

h.observe(8)

那么metrics会这样输出:

# HELP hh A histogram
# TYPE hh histogram
hh_bucket{le="-5.0"} 0.0
hh_bucket{le="0.0"} 0.0
hh_bucket{le="5.0"} 0.0
hh_bucket{le="+Inf"} 1.0
hh_count 1.0
hh_sum 8.0

hh_sum记录了observe的总和,count记录了observe的次数,bucket就是各种桶了,le表示<=某值。

可见,值8<=无穷大,所以只有最后一个桶计数了1次(注意,桶只是计数,bucket作用相当于统计样本在不同区间的出现次数)。

bucket的划分需要我们根据数据的分布拍脑袋指定,合理的划分可以让promql估算百分位的时候更准确,我们使用histogram的时候只需要知道先分好桶,再不断的打点即可,最终百分位的计算可以基于histogram的原始数据完成。

测试示例:

import random
import prometheus_client
from prometheus_client import Histogram
from flask import Response, Flask
app = Flask(__name__)
h = Histogram("h1", 'A Histogram', buckets=(-5, 0, 5))
@app.route("/api/metrics/histogram/")
def r_value():
  h.observe(random.randint(-5, 5))
  return Response(prometheus_client.generate_latest(h),
          mimetype="text/plain")

if __name__ == "__main__":
 app.run(host="127.0.0.1",port=8081)

连续访问http://127.0.0.1:8081/api/metrics/histogram/:

# HELP h1 A Histogram
# TYPE h1 histogram
h1_bucket{le="-5.0"} 0.0
h1_bucket{le="0.0"} 5.0
h1_bucket{le="5.0"} 10.0
h1_bucket{le="+Inf"} 10.0
h1_count 10.0
# HELP h1_created A Histogram
# TYPE h1_created gauge
h1_created 1.6053319432993534e+09

summary

python客户端没有完整实现summary算法,这里不介绍。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python 匹配任意字符(包括换行符)的正则表达式写法
Oct 29 Python
Python中join和split用法实例
Apr 14 Python
对于Python装饰器使用的一些建议
Jun 03 Python
Python对字符串实现去重操作的方法示例
Aug 11 Python
tensorflow获取变量维度信息
Mar 10 Python
Python异常处理操作实例详解
May 10 Python
Python系统监控模块psutil功能与经典用法分析
May 24 Python
Python字典常见操作实例小结【定义、添加、删除、遍历】
Oct 25 Python
python 在threading中如何处理主进程和子线程的关系
Apr 25 Python
python中return不返回值的问题解析
Jul 22 Python
使用numpngw和matplotlib生成png动画的示例代码
Jan 24 Python
Python利用机器学习算法实现垃圾邮件的识别
Jun 28 Python
python3爬虫中多线程进行解锁操作实例
Nov 25 #Python
mac系统下安装pycharm、永久激活、中文汉化详细教程
Nov 24 #Python
python 基于wx实现音乐播放
Nov 24 #Python
Python WebSocket长连接心跳与短连接的示例
Nov 24 #Python
Python 利用Entrez库筛选下载PubMed文献摘要的示例
Nov 24 #Python
python实现企业微信定时发送文本消息的示例代码
Nov 24 #Python
python爬虫快速响应服务器的做法
Nov 24 #Python
You might like
PHP 5.0对象模型深度探索之属性和方法
2008/03/27 PHP
解析PHP中intval()等int转换时的意外异常情况
2013/06/21 PHP
PHP 魔术变量和魔术函数详解
2015/02/25 PHP
php中钩子(hook)的原理与简单应用demo示例
2019/09/03 PHP
网站页面自动跳转实现方法PHP、JSP(上)
2010/08/01 Javascript
深入理解JavaScript系列(29):设计模式之装饰者模式详解
2015/03/03 Javascript
javascript函数特点实例分析
2015/05/14 Javascript
JavaScript使表单中的内容显示在屏幕上的方法
2015/06/29 Javascript
浅析JavaScript中命名空间namespace模式
2016/06/22 Javascript
AngularJS 依赖注入详解和简单实例
2016/07/28 Javascript
避免jQuery名字冲突 noConflict()方法
2016/07/30 Javascript
Angular ng-repeat遍历渲染完页面后执行其他操作详细介绍
2016/12/13 Javascript
javascript添加前置0(补零)的几种方法
2017/01/05 Javascript
javascript正则表达式模糊匹配IP地址功能示例
2017/01/06 Javascript
canvas实现图像布局填充功能
2017/02/06 Javascript
webpack-dev-server自动更新页面方法
2018/02/22 Javascript
node错误处理与日志记录的实现
2018/12/24 Javascript
jQuery中each和js中forEach的区别分析
2019/02/27 jQuery
使用Phantomjs和Node完成网页的截屏快照的方法
2019/07/16 Javascript
关于Vue中axios的封装实例详解
2019/10/20 Javascript
用pywin32实现windows模拟鼠标及键盘动作
2014/04/22 Python
python中异常报错处理方法汇总
2016/11/20 Python
更改Ubuntu默认python版本的两种方法python-&gt; Anaconda
2016/12/18 Python
Python基于正则表达式实现检查文件内容的方法【文件检索】
2017/08/30 Python
python tensorflow基于cnn实现手写数字识别
2018/01/01 Python
python3.6使用pymysql连接Mysql数据库
2018/05/25 Python
Python实现蒙特卡洛算法小实验过程详解
2019/07/12 Python
Python通过cv2读取多个USB摄像头
2019/08/28 Python
python+opencv实现移动侦测(帧差法)
2020/03/20 Python
师范学院教师自荐书
2014/01/31 职场文书
学生自我评价范文
2014/02/02 职场文书
2015年元旦演讲稿
2014/09/12 职场文书
个人工作能力自我评价
2015/03/05 职场文书
学校国庆节活动总结
2015/03/23 职场文书
jquery插件实现悬浮的菜单
2021/04/24 jQuery
mysql 获取相邻数据项
2022/05/11 MySQL