tensorflow学习笔记之mnist的卷积神经网络实例


Posted in Python onApril 15, 2018

mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的。但是CNN层数要多一些,网络模型需要自己来构建。

程序比较复杂,我就分成几个部分来叙述。

首先,下载并加载数据:

import tensorflow as tf 
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)   #下载并加载mnist数据
x = tf.placeholder(tf.float32, [None, 784])            #输入的数据占位符
y_actual = tf.placeholder(tf.float32, shape=[None, 10])      #输入的标签占位符

定义四个函数,分别用于初始化权值W,初始化偏置项b, 构建卷积层和构建池化层。

#定义一个函数,用于初始化所有的权值 W
def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

#定义一个函数,用于初始化所有的偏置项 b
def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)
 
#定义一个函数,用于构建卷积层
def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

#定义一个函数,用于构建池化层
def max_pool(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')

接下来构建网络。整个网络由两个卷积层(包含激活层和池化层),一个全连接层,一个dropout层和一个softmax层组成。

#构建网络
x_image = tf.reshape(x, [-1,28,28,1])     #转换输入数据shape,以便于用于网络中
W_conv1 = weight_variable([5, 5, 1, 32])   
b_conv1 = bias_variable([32])    
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)   #第一个卷积层
h_pool1 = max_pool(h_conv1)                 #第一个池化层

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)   #第二个卷积层
h_pool2 = max_pool(h_conv2)                  #第二个池化层

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])       #reshape成向量
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)  #第一个全连接层

keep_prob = tf.placeholder("float") 
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)         #dropout层

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)  #softmax层

网络构建好后,就可以开始训练了。

cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict))   #交叉熵
train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy)  #梯度下降法
correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))  
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))         #精确度计算
sess=tf.InteractiveSession()             
sess.run(tf.initialize_all_variables())
for i in range(20000):
 batch = mnist.train.next_batch(50)
 if i%100 == 0:         #训练100次,验证一次
  train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0})
  print 'step %d, training accuracy %g'%(i,train_acc)
  train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5})

test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0})
print "test accuracy %g"%test_acc

Tensorflow依赖于一个高效的C++后端来进行计算。与后端的这个连接叫做session。一般而言,使用TensorFlow程序的流程是先创建一个图,然后在session中启动它。

这里,我们使用更加方便的InteractiveSession类。通过它,你可以更加灵活地构建你的代码。它能让你在运行图的时候,插入一些计算图,这些计算图是由某些操作(operations)构成的。这对于工作在交互式环境中的人们来说非常便利,比如使用IPython。

训练20000次后,再进行测试,测试精度可以达到99%。

完整代码:

# -*- coding: utf-8 -*-
"""
Created on Thu Sep 8 15:29:48 2016

@author: root
"""
import tensorflow as tf 
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)   #下载并加载mnist数据
x = tf.placeholder(tf.float32, [None, 784])            #输入的数据占位符
y_actual = tf.placeholder(tf.float32, shape=[None, 10])      #输入的标签占位符

#定义一个函数,用于初始化所有的权值 W
def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

#定义一个函数,用于初始化所有的偏置项 b
def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)
 
#定义一个函数,用于构建卷积层
def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

#定义一个函数,用于构建池化层
def max_pool(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')

#构建网络
x_image = tf.reshape(x, [-1,28,28,1])     #转换输入数据shape,以便于用于网络中
W_conv1 = weight_variable([5, 5, 1, 32])   
b_conv1 = bias_variable([32])    
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)   #第一个卷积层
h_pool1 = max_pool(h_conv1)                 #第一个池化层

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)   #第二个卷积层
h_pool2 = max_pool(h_conv2)                  #第二个池化层

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])       #reshape成向量
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)  #第一个全连接层

keep_prob = tf.placeholder("float") 
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)         #dropout层

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)  #softmax层

cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict))   #交叉熵
train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy)  #梯度下降法
correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))  
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))         #精确度计算
sess=tf.InteractiveSession()             
sess.run(tf.initialize_all_variables())
for i in range(20000):
 batch = mnist.train.next_batch(50)
 if i%100 == 0:         #训练100次,验证一次
  train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0})
  print('step',i,'training accuracy',train_acc)
  train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5})

test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0})
print("test accuracy",test_acc)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python自定义函数的创建、调用和函数的参数详解
Mar 11 Python
Python中用于转换字母为小写的lower()方法使用简介
May 19 Python
实践Python的爬虫框架Scrapy来抓取豆瓣电影TOP250
Jan 20 Python
深入解析Python编程中super关键字的用法
Jun 24 Python
Python实现的括号匹配判断功能示例
Aug 25 Python
python gdal安装与简单使用
Aug 01 Python
Python传递参数的多种方式(小结)
Sep 18 Python
利用python实现冒泡排序算法实例代码
Dec 01 Python
pytorch的batch normalize使用详解
Jan 15 Python
Pycharm激活码激活两种快速方式(附最新激活码和插件)
Mar 12 Python
pycharm 对代码做静态检查操作
Jun 09 Python
使用Python制作一盏 3D 花灯喜迎元宵佳节
Feb 26 Python
tensorflow学习笔记之简单的神经网络训练和测试
Apr 15 #Python
Pytorch入门之mnist分类实例
Apr 14 #Python
pytorch构建网络模型的4种方法
Apr 13 #Python
Python输入二维数组方法
Apr 13 #Python
Python基于递归实现电话号码映射功能示例
Apr 13 #Python
Python的多维空数组赋值方法
Apr 13 #Python
python多维数组切片方法
Apr 13 #Python
You might like
php读取目录所有文件信息dir示例
2014/03/18 PHP
PHP curl使用实例
2015/07/02 PHP
javascript校验价格合法性实例(必须输入2位小数)
2014/05/05 Javascript
解释&&和||在javascript中的另类用法
2014/07/28 Javascript
Javascript中使用parseInt函数需要注意的问题
2015/04/02 Javascript
手机端页面rem宽度自适应脚本
2015/05/20 Javascript
jQuery实现返回顶部效果的方法
2015/05/29 Javascript
jQuery实现可高亮显示的二级CSS菜单效果
2015/09/01 Javascript
基于JavaScript实现生成名片、链接等二维码
2015/09/20 Javascript
详解AngularJS中的http拦截
2016/02/09 Javascript
jquery使用Cookie和JSON记录用户最近浏览历史
2016/04/19 Javascript
JS组件Bootstrap Table使用实例分享
2016/05/30 Javascript
微信小程序功能之全屏滚动效果的实现代码
2018/11/22 Javascript
javascript中innerHTML 获取或替换html内容的实现代码
2020/03/17 Javascript
单线程JavaScript实现异步过程详解
2020/05/19 Javascript
Python里disconnect UDP套接字的方法
2015/04/23 Python
Linux中Python 环境软件包安装步骤
2016/03/31 Python
如何利用Fabric自动化你的任务
2016/10/20 Python
Python学习入门之区块链详解
2017/07/25 Python
Pandas 数据处理,数据清洗详解
2018/07/10 Python
用python 实现在不确定行数情况下多行输入方法
2019/01/28 Python
Python基于opencv实现的简单画板功能示例
2019/03/04 Python
Pyqt5 基本界面组件之inputDialog的使用
2019/06/25 Python
Python破解BiliBili滑块验证码的思路详解(完美避开人机识别)
2020/02/17 Python
HTML5获取当前地理位置并在百度地图上展示的实例
2020/07/10 HTML / CSS
捷克家电和家具购物网站:OKAY.cz
2020/07/23 全球购物
如何在发生故障的节点上重新安装 SQL Server
2013/03/14 面试题
CSS实现fullpage.js全屏滚动效果的示例代码
2021/03/24 HTML / CSS
小学二年级学生评语
2014/04/21 职场文书
村委会贫困证明范本
2014/09/17 职场文书
教师四风自我剖析材料
2014/09/30 职场文书
诚信承诺书
2015/01/19 职场文书
违纪学生保证书
2015/02/27 职场文书
《中彩那天》教学反思
2016/02/24 职场文书
mysql5.7使用binlog 恢复数据的方法
2021/06/03 MySQL
使用 Apache Dubbo 实现远程通信(微服务架构)
2022/02/12 Servers