实践Python的爬虫框架Scrapy来抓取豆瓣电影TOP250


Posted in Python onJanuary 20, 2016

安装部署Scrapy

在安装Scrapy前首先需要确定的是已经安装好了Python(目前Scrapy支持Python2.5,Python2.6和Python2.7)。官方文档中介绍了三种方法进行安装,我采用的是使用 easy_install 进行安装,首先是下载Windows版本的setuptools(下载地址:http://pypi.python.org/pypi/setuptools),下载完后一路NEXT就可以了。
安装完setuptool以后。执行CMD,然后运行一下命令:

easy_install -U Scrapy

同样的你可以选择使用pip安装,pip的地址:http://pypi.python.org/pypi/pip
使用pip安装Scrapy的命令为

pip install Scrapy

如果你的电脑先前装过visual studio 2008 或 visual studio 2010那么一起顺利,Scrapy已经安装完成。如果出现下列报错:Unable to find vcvarsall.bat 那么你需要折腾下。你可以安装visual studio 后进行安装或采用下面的方式进行解决:
首先安装MinGW(MinGW下载地址:http://sourceforge.net/projects/mingw/files/),在MinGW的安装目录下找到bin的文件夹,找到mingw32-make.exe,复制一份更名为make.exe;
把MinGW的路径添加到环境变量path中,比如我把MinGW安装到D:\MinGW\中,就把D:\MinGW\bin添加到path中;
打开命令行窗口,在命令行窗口中进入到要安装代码的目录下;
输入如下命令 setup.py install build ?compiler=mingw32 就可以安装了。

如果出现“xslt-config' 不是内部或外部命令,也不是可运行的程序或批处理文件。”错误,原因主要是lxml安装不成功,只要上http://pypi.python.org/simple/lxml/下载个exe文件进行安装就可以了。
下面就可以进入正题了。

新建工程
让我们来用爬虫获取豆瓣电影Top 250的电影信息吧。开始之前,我们新建一个Scrapy工程。因为我用的Win7,所以在CMD中进入一个我希望保存代码的目录,然后执行:

D:\WEB\Python>scrapy startproject doubanmoive

这个命令会在当前目录下创建一个新的目录doubanmoive,目录结构如下:

D:\WEB\Python\doubanmoive>tree /f
Folder PATH listing for volume Data
Volume serial number is 00000200 34EC:9CB9
D:.
│ scrapy.cfg
│
└─doubanmoive
 │ items.py
 │ pipelines.py
 │ settings.py
 │ __init__.py
 │
 └─spiders
   __init__.py

这些文件主要为:

  • doubanmoive/items.py: 定义需要获取的内容字段,类似于实体类。
  • doubanmoive/pipelines.py: 项目管道文件,用来处理Spider抓取的数据。
  • doubanmoive/settings.py: 项目配置文件
  • doubanmoive/spiders: 放置spider的目录

定义项目(Item)

Item是用来装载抓取数据的容器,和Java里的实体类(Entity)比较像,打开doubanmoive/items.py可以看到默认创建了以下代码。

from scrapy.item import Item, Field

class DoubanmoiveItem(Item):
  pass

我们只需要在 Doubanmoive 类中增加需要抓取的字段即可,如 name=Field() ,最后根据我们的需求完成代码如下。

from scrapy.item import Item, Field

class DoubanmoiveItem(Item):
 name=Field()#电影名
 year=Field()#上映年份
 score=Field()#豆瓣分数
 director=Field()#导演
 classification=Field()#分类
 actor=Field()#演员

编写爬虫(Spider)

Spider是整个项目中最核心的类,在这个类里我们会定义抓取对象(域名、URL)以及抓取规则。Scrapy官方文档中的教程是基于 BaseSpider 的,但 BaseSpider 只能爬取给定的URL列表,无法根据一个初始的URL向外拓展。不过除了 BaseSpider ,还有很多可以直接继承 Spider 的类,比如 scrapy.contrib.spiders.CrawlSpider 。

在 doubanmoive/spiders 目录下新建moive_spider.py文件,并填写代码。

# -*- coding: utf-8 -*-
from scrapy.selector import Selector
from scrapy.contrib.spiders import CrawlSpider,Rule
from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor
from doubanmoive.items import DoubanmoiveItem

class MoiveSpider(CrawlSpider):
 name="doubanmoive"
 allowed_domains=["movie.douban.com"]
 start_urls=["http://movie.douban.com/top250"]
 rules=[
  Rule(SgmlLinkExtractor(allow=(r'http://movie.douban.com/top250\?start=\d+.*'))),
  Rule(SgmlLinkExtractor(allow=(r'http://movie.douban.com/subject/\d+')),callback="parse_item"),  
 ]

 def parse_item(self,response):
  sel=Selector(response)
  item=DoubanmoiveItem()
  item['name']=sel.xpath('//*[@id="content"]/h1/span[1]/text()').extract()
  item['year']=sel.xpath('//*[@id="content"]/h1/span[2]/text()').re(r'\((\d+)\)')
  item['score']=sel.xpath('//*[@id="interest_sectl"]/div/p[1]/strong/text()').extract()
  item['director']=sel.xpath('//*[@id="info"]/span[1]/a/text()').extract()
  item['classification']= sel.xpath('//span[@property="v:genre"]/text()').extract()
  item['actor']= sel.xpath('//*[@id="info"]/span[3]/a[1]/text()').extract()
  return item

代码说明: MoiveSpider 继承Scrapy中的 CrawlSpider , name , allow_domains , start_url 看名字就知道什么含义,其中rules稍微复杂一些,定义了URL的抓取规则,符合 allow 正则表达式的链接都会加入到Scheduler(调度程序)。通过分析豆瓣电影Top250的分页URL http://movie.douban.com/top250?start=25&filter=&type= 可以得到以下规则

Rule(SgmlLinkExtractor(allow=(r'http://movie.douban.com/top250\?start=\d+.*'))),
而我们真正要抓取的页面是每一个电影的详细介绍,如肖申克的救赎的链接为 http://movie.douban.com/subject/1292052/ ,那只有 subject 后面的数字是变化的,根据正则表达式得到如下代码。我们需要抓取这种类型链接中的内容,于是加入callback属性,将Response交给parse_item函数来处理。

Rule(SgmlLinkExtractor(allow=(r'http://movie.douban.com/subject/\d+')),callback="parse_item"),     
在 parse_item 函数中的处理逻辑非常简单,获取符合条件链接的代码,然后根据一定的规则抓取内容赋给item并返回 Item Pipeline 。获取大部分标签的内容不需要编写复杂的正则表达式,我们可以使用 XPath 。 XPath 是一门在 XML 文档中查找信息的语言,但它也可以用在HTML中。下表列出了常用表达式。

表达式 描述
nodename 选取此节点的所有子节点。
/ 从根节点选取。
// 从匹配选择的当前节点选择文档中的节点,而不考虑它们的位置。
. 选取当前节点。
.. 选取当前节点的父节点。
@ 选取属性。

如 //*[@id="content"]/h1/span[1]/text() 获取的结果是在id为content的任意元素下h1元素下的span列表中第一个元素的文本内容。我们可以通过Chrome开发者工具(F12)来获取某内容的XPath表达式,具体操作为在需要抓取的内容上点击审查元素,下方就会出现开发者工具,并定位到该元素,在内容上点击右键,选择复制XPath。

实践Python的爬虫框架Scrapy来抓取豆瓣电影TOP250

存储数据

爬虫获取到数据以后我们需要将其存储到数据库中,之前我们提到该操作需要靠项目管道(pipeline)来处理,其通常执行的操作为:

  • 清洗HTML数据
  • 验证解析到的数据(检查项目是否包含必要的字段)
  • 检查是否是重复数据(如果重复就删除)
  • 将解析到的数据存储到数据库中

由于我们获取的数据格式多种多样,有一些存储在关系型数据库中并不方便,所以我在写完MySQL版本的Pipeline之后又写了一个MongoDB的。

MySQL版本: 

# -*- coding: utf-8 -*-
from scrapy import log
from twisted.enterprise import adbapi
from scrapy.http import Request

import MySQLdb
import MySQLdb.cursors


class DoubanmoivePipeline(object):
 def __init__(self):
  self.dbpool = adbapi.ConnectionPool('MySQLdb',
    db = 'python',
    user = 'root',
    passwd = 'root',
    cursorclass = MySQLdb.cursors.DictCursor,
    charset = 'utf8',
    use_unicode = False
  )
 def process_item(self, item, spider):
  query = self.dbpool.runInteraction(self._conditional_insert, item)
  query.addErrback(self.handle_error)
  return item

 def _conditional_insert(self,tx,item):
  tx.execute("select * from doubanmoive where m_name= %s",(item['name'][0],))
  result=tx.fetchone()
  log.msg(result,level=log.DEBUG)
  print result
  if result:
   log.msg("Item already stored in db:%s" % item,level=log.DEBUG)
  else:
   classification=actor=''
   lenClassification=len(item['classification'])
   lenActor=len(item['actor'])
   for n in xrange(lenClassification):
    classification+=item['classification'][n]
    if n<lenClassification-1:
     classification+='/'
   for n in xrange(lenActor):
    actor+=item['actor'][n]
    if n<lenActor-1:
     actor+='/'

   tx.execute(\
    "insert into doubanmoive (m_name,m_year,m_score,m_director,m_classification,m_actor) values (%s,%s,%s,%s,%s,%s)",\
    (item['name'][0],item['year'][0],item['score'][0],item['director'][0],classification,actor))
   log.msg("Item stored in db: %s" % item, level=log.DEBUG)

 def handle_error(self, e):
  log.err(e)

MongoDB版本:

# -*- coding: utf-8 -*-
import pymongo

from scrapy.exceptions import DropItem
from scrapy.conf import settings
from scrapy import log

class MongoDBPipeline(object):
 #Connect to the MongoDB database
 def __init__(self):
  connection = pymongo.Connection(settings['MONGODB_SERVER'], settings['MONGODB_PORT'])
  db = connection[settings['MONGODB_DB']]
  self.collection = db[settings['MONGODB_COLLECTION']]

 def process_item(self, item, spider):
  #Remove invalid data
  valid = True
  for data in item:
   if not data:
   valid = False
   raise DropItem("Missing %s of blogpost from %s" %(data, item['url']))
  if valid:
  #Insert data into database
   new_moive=[{
    "name":item['name'][0],
    "year":item['year'][0],
    "score":item['score'][0],
    "director":item['director'],
    "classification":item['classification'],
    "actor":item['actor']
   }]
   self.collection.insert(new_moive)
   log.msg("Item wrote to MongoDB database %s/%s" %
   (settings['MONGODB_DB'], settings['MONGODB_COLLECTION']),
   level=log.DEBUG, spider=spider) 
  return item

可以看到其基本的处理流程是一样,但是MySQL不太方便的一点就是需要将数组类型的数据通过分隔符转换。而MongoDB支持存入List、Dict等多种类型的数据。

配置文件

在运行爬虫之前还需要将在 settings.py 中增加一些配置信息。

BOT_NAME = 'doubanmoive'
SPIDER_MODULES = ['doubanmoive.spiders']
NEWSPIDER_MODULE = 'doubanmoive.spiders'
ITEM_PIPELINES={
 'doubanmoive.mongo_pipelines.MongoDBPipeline':300,
 'doubanmoive.pipelines.DoubanmoivePipeline':400,
}
LOG_LEVEL='DEBUG'

DOWNLOAD_DELAY = 2
RANDOMIZE_DOWNLOAD_DELAY = True
USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.54 Safari/536.5'
COOKIES_ENABLED = True

MONGODB_SERVER = 'localhost'
MONGODB_PORT = 27017
MONGODB_DB = 'python'
MONGODB_COLLECTION = 'test'

ITEM_PIPELINES 中定义了MySQL和MongoDB两个Pipeline文件,后面的数字代表执行的优先级顺序,范围为0~1000。 而中间的 DOWNLOAD_DELAY 等信息是为了防止爬虫被豆瓣Ban掉,增加了一些随机延迟,浏览器代理等。最后的就是MongoDB的配置信息,MySQL也可以参考这种方式来写。

至此为止,抓取豆瓣电影的爬虫就已经完成了。在命令行中执行 Scrapy crawl doubanmoive 让蜘蛛开始爬行吧!

Python 相关文章推荐
python中使用mysql数据库详细介绍
Mar 27 Python
Python使用scrapy采集数据过程中放回下载过大页面的方法
Apr 08 Python
Python实现队列的方法
May 26 Python
详解Python中的序列化与反序列化的使用
Jun 30 Python
Python中对象迭代与反迭代的技巧总结
Sep 17 Python
解决python3中cv2读取中文路径的问题
Dec 05 Python
django 消息框架 message使用详解
Jul 22 Python
Python实现串口通信(pyserial)过程解析
Sep 25 Python
python3 图片 4通道转成3通道 1通道转成3通道 图片压缩实例
Dec 03 Python
后端开发使用pycharm的技巧(推荐)
Mar 27 Python
利用python绘制数据曲线图的实现
Apr 09 Python
python使用glob检索文件的操作
May 20 Python
Python的爬虫包Beautiful Soup中用正则表达式来搜索
Jan 20 #Python
Python使用Beautiful Soup包编写爬虫时的一些关键点
Jan 20 #Python
Python制作爬虫抓取美女图
Jan 20 #Python
编写Python爬虫抓取豆瓣电影TOP100及用户头像的方法
Jan 20 #Python
以视频爬取实例讲解Python爬虫神器Beautiful Soup用法
Jan 20 #Python
使用Python的urllib和urllib2模块制作爬虫的实例教程
Jan 20 #Python
使用python实现省市三级菜单效果
Jan 20 #Python
You might like
php 清除网页病毒的方法
2008/12/05 PHP
PHP怎么实现网站保存快捷方式方便用户随时浏览
2013/08/15 PHP
ThinkPHP使用PHPExcel实现Excel数据导入导出完整实例
2014/07/22 PHP
PHP中串行化用法示例
2016/11/16 PHP
PHP构造二叉树算法示例
2017/06/21 PHP
Extjs中的GridPanel隐藏列会显示在menuDisabled中解决方法
2013/01/27 Javascript
jquery索引在使用中的一些困惑
2013/10/24 Javascript
jquery默认校验规则整理
2014/03/24 Javascript
jQuery实现放大镜效果实例代码
2016/03/17 Javascript
AngularJS 中的事件详解
2016/07/28 Javascript
JS中使用FormData上传文件、图片的方法
2016/08/07 Javascript
微信小程序 wxapp视图容器 view详解
2016/10/31 Javascript
关于jQuery.ajax()的jsonp碰上post详解
2017/07/02 jQuery
JavaScript中的FileReader图片预览上传功能实现代码
2017/07/24 Javascript
JavaScript hasOwnProperty() 函数实例详解
2017/08/04 Javascript
nodejs基础之常用工具模块util用法分析
2018/12/26 NodeJs
Angular 多级路由实现登录页面跳转(小白教程)
2019/11/19 Javascript
Vue组件模板及组件互相引用代码实例
2020/03/11 Javascript
在Chrome DevTools中调试JavaScript的实现
2020/04/07 Javascript
Javascript查看大图功能代码实现
2020/05/07 Javascript
Python对象转JSON字符串的方法
2016/04/27 Python
Python3利用Dlib实现摄像头实时人脸检测和平铺显示示例
2019/02/21 Python
Pandas+Matplotlib 箱式图异常值分析示例
2019/12/09 Python
Python pip配置国内源的方法
2020/02/14 Python
Python爬虫实现百度翻译功能过程详解
2020/05/29 Python
实例讲解使用HTML5 Canvas绘制阴影效果的方法
2016/03/25 HTML / CSS
大韩航空官方网站:Korean Air
2017/10/25 全球购物
我们的节日中秋活动方案
2014/08/19 职场文书
2014年保险业务员工作总结
2014/12/23 职场文书
杭州黄龙洞导游词
2015/02/10 职场文书
2015社区六五普法工作总结
2015/04/21 职场文书
学子宴致辞大全
2015/07/27 职场文书
聘任合同书
2015/09/21 职场文书
详解Mysql 函数调用优化
2021/04/07 MySQL
go原生库的中bytes.Buffer用法
2021/04/25 Golang
利用nginx搭建RTMP视频点播、直播、HLS服务器
2022/05/25 Servers